

Roberto Tricarico Tutor: Prof. Carlo Forestiere XXXII Cycle - III year presentation

Light-Matter Interaction in Open Systems: from Nanoparticles to Atoms

General Information

- Bachelor's degree in electronic engineering, Università Federico II (2015)
- Master's degree in electronic engineering, Università Federico II (2016)
- ITEE: athenaeum fellowship, Prof. Carlo Forestiere

Year	Courses	Seminars	Research
1°	30	9.8	21
2°	16	9.6	34.4
3°	6	0	53.2

- 7 courses, 1 language course, 6 PhD school, 12 seminars
- 6 journal papers (+1 submitted), 2 conference papers, 2 book chapters
- **Period abroad** Third year of the PhD at the Institute of Photonic Sciences in Castelldefels (Barcelona) **ICFO**, supervised by Prof. Dr. **Darrick Chang**.
- Thesis co-supervisor : Prof. Dr. Darrick Chang.

Course list (8)

- Ottica Quantistica (1st year)
- Meccanica Quantistica dei Molti Corpi (1st year)
- Teoria dei Gruppi e Applicazioni (1st year)
- Introduction to Quantum Electrodynamics (1st year)
- Fisica dello Stato Solido 2 (2nd year)
- Plasmonics and Metamaterials (2nd year)
- Elettromagnetismo e Relatività (2nd year)
- Spanish course (A1) (3rd year)

																	 Estimated 								Achieved		
	Credits year 1									Cr	edits	year	2					Cr									
		Ч	2	ε	4	ß	9			1	2	ε	4	ß	9			Ч	2	ŝ	4	S	9			TOTAL	
Modules	30	8	3	11	0	0	8	30	20	0	8	4	0	0	4	16	0	3	0	3	0	0	0	6	30-70	52	
Seminars	10	0.4	0	0.4	6	3	0	9.8	10	0	2.3	3.5	0	3.8	0	9.6	0	0	0	0	0	0	0	0	10-30	19.4	
Research	20	3	5	3	3	6	1	21	30	8	3	3	8	7.4	5	34.4	60	7	10	6.2	10	10	105	3.2	80-140	108.6	
	60	11	8	14	9	9	9	60.8	60	8	13.3	10.5	8	11.2	9	60	60	10	10	9.2	10	10	105	9.2	180	180	

PhD school list (6)

- Antenna Synthesis, Napoli, (1st year)
- Ferdinando Gasparini XXI edizione, Napoli, (1st year)
- XLII Scuola estiva di Fisica Matematica, Ravello, (1st year)
- International School of Plasmonics and Nano-Optics, Cetraro, (2nd year)
- Ferdinando Gasparini XXII edizione, Napoli, (2nd year)
- Light Matter interaction in Dilute Media and Individual Quantum Systems, Les Houches, (3rd year)

															 Estimated Achieved 											
	Credits year 1										Cr	edits	year	2					Cr							
		1	2	ŝ	4	ъ	9			1	2	m	4	ъ	9			Ч	2	ŝ	4	Ŋ	9			TOTAL
Modules	30	8	3	11	0	0	8	30	20	0	8	4	0	0	4	16	0	3	0	3	0	0	0	6	30-70	52
Seminars	10	0.4	0	0.4	6	3	0	9.8	10	0	2.3	3.5	0	3.8	0	9.6	0	0	0	0	0	0	0	0	10-30	19.4
Research	20	3	5	3	3	6	1	21	30	8	3	3	8	7.4	5	34.4	60	7	10	6.2	10	10	105	53.2	80-140	108.6
	60	11	8	14	9	9	9	60.8	60	8	13.3	10.5	8	11.2	9	60	60	10	10	9.2	10	10	105	59.2	180	180

Seminar list (12)

- Electromechanical Consequences of Violent Instabilities in Tokamaks, Vladimir D. Pustovitov
- Smart Nanodevices for Theranostics, Ilaria Rea
- Magnetic Refrigeration: Thermodynamics of novel magnetic materials for an efficient cooling technique, Vittorio Basso
- Thermodynamics in spintronics: the spin Seebeck and spin Peltier effects, Vittorio Basso
- Approssimazioni di problemi alle derivate parziali e applicazioni, Alfio Quarteroni
- Tailoring Waves at the extreme with metamaterials, Nader Engheta
- Near-zero-index photonics, Nader Engheta
- IBM Q: building the first universal quantum computers for business and science, Federico Mattei and Najla Said
- How to Produce a scientific paper, Aliaksandr Birokou and Elisa Magistrelli
- Tomografia e Imaging: Principi, Algoritmi e Metodi Numerici, Pasquale Memmolo
- The power of Trefftz Approximations: Applications in Electromagnetics, Igor Tsukerman
- Non-Asymptotic and Nonlocal Homogenization of Periodic Electromagnetic Structures , Igor Tsukerman

																		•	Estimated •						Achie	eved
	Credits year 1										Cr	edits	year	2					Cr							
		1	2	ŝ	4	ß	9			1	2	ŝ	4	ß	9			Ч	2	ŝ	4	S	9			TOTAL
Modules	30	8	3	11	0	0	8	30	20	0	8	4	0	0	4	16	0	3	0	3	0	0	0	6	30-70	52
Seminars	10	0.4	0	0.4	6	3	0	9.8	10	0	2.3	3.5	0	3.8	0	9.6	0	0	0	0	0	0	0	0	10-30	19.4
Research	20	3	5	3	3	6	1	21	30	8	3	3	8	7.4	5	34.4	60	7	10	6.2	10	10	105	53.2	80-140	108.6
	60	11	8	14	9	9	9	60.8	60	8	13.3	10.5	8	11.2	9	60	60	10	10	9.2	10	10	105	9.2	180	180

Publication list

Journal papers (6)

- C. Forestiere, G. Miano, G. Rubinacci, A. Tamburrino, <u>R. Tricarico</u>, S. Ventre, "Material-Independent Modes of Arbitrarily Shaped Homogeneous Scatterers", IEEE Transactions on Antennas and Propagation, Mar. 2018
- C. Forestiere, G. Miano, M. Pascale, <u>R. Tricarico</u>, "Directional scattering cancellation for an electrically large dielectric sphere", **Optics Letters**, Apr. 2019
- C. Forestiere, G. Miano, M. Pascale, <u>R. Tricarico</u>, "Electromagnetic modes and resonances of two-dimensional bodies", **Phys. Rev. B**, Apr. 2019
- C. Forestiere, G. Miano, M. Pascale and <u>R. Tricarico</u>, "Electromagnetic Scattering Resonances of Quasi-1-D Nanoribbons", **IEEE Transactions on Antennas and Propagation**, Aug. 2019
- M. Pascale, G. Miano, <u>R. Tricarico</u>, and C. Forestiere, "Full-wave electromagnetic modes and hybridization in nanoparticle dimers", **Scientific Reports**, Oct. 2019
- C. Forestiere, G. Miano, M. Pascale, G. Rubinacci, A. Tamburrino, <u>R. Tricarico</u>, and S. Ventre, "Magnetoquasistatic Resonances of Small Dielectric Objects." Accepted by **Physical Review Research**

Publication list

Conference papers (2)

- M. Pascale, R. Tricarico, G. Miano and C. Forestiere, Full-wave mode hybridization in nanoparticle dimers, 2019 International Conference on Electromagnetics in Advanced Applications (**ICEAA 19**), Granada, Spain, 2019.
- R. Tricarico, C. Forestiere, G. Miano and M. Pascale, Field Quantization in Arbitrarily-Shaped Metal Nanoparticles, International Conference on Electromagnetics in Advanced Applications (**ICEAA 19**), Granada, Spain, 2019.

Book Chapters (2)

- C. Forestiere, G. Miano, M. Pascale, R. Tricarico, chapter title: "A full-retarded spectral technique for the Fano-resonance analysis in a dielectric nanosphere", **Springer** book: "Fano Resonances in Optics and Microwaves", pp. 185-218, Nov. 2018.
- C. Forestiere, G. Miano, M. Pascale, <u>R. Tricarico</u>, chapter title: "Material Independent Modes for the design of electromagnetic scattering", **World Scientific Publishing** book: "Compendium on Electromagnetic Analysis from electrostatics to photonics: fundamentals and applications for physicists and engineers", out in Apr. 2020.

Submitted paper (1)

• C. Forestiere, G. Miano, M. Pascale and R. Tricarico, "Quantum theory of Radiative Decay Rate and Frequency Shift of Surface Plasmon Modes in Arbitrarily Shaped Nanoparticles", **arXiv**, Jan. 2020.

Light-Matter in Open Systems

The study of the interaction between light and matter at the nano/atomic scale presents interesting challenges and new perspective in the case of **open systems**, i.e. systems which **lose energy** (radiation to infinity).

Open Systems: Atoms

Cavity-QED: the atoms are enclosed in an optical cavity (*closed system*)

Open Systems: Atoms

Cavity-QED: the atoms are enclosed in an optical cavity (*closed system*) Free space QED: the atoms are in free space and scatter *uncollectable light* in 4π

Open Systems: Nanoparticles

Quasistatic limit: $d \ll \lambda$ retarded NO RADIATION OF ENERGY TO INFINITY (*closed system*)

Open Systems: Nanoparticles

Increasing d

Quasistatic limit: $d \ll \lambda$ retarded NO RADIATION OF ENERGY TO INFINITY (*closed system*) **Full-retarded** limit: $d \sim \lambda$ RADIATION OF ENERGY TO AT INFINITY (*Open System*)

Light-Matter in Open Systems

Three selected topics in Light-Matter Interaction in Open Systems

I Material Independent Modes for the Electromagnetic Scattering *NANOPARTICLES, Classical Electrodynamics*

II Quantum theory of frequency shift and radiative decay rate in arbitrarily shaped metal nanoparticles and dimers *NANOPARTICLES, Quantum Electrodynamics* **III** Nonlinearities in Rydberg-EIT, *ATOMS*

We *don't want* to solve the problem directly, but we *want* to provide a modal theory for the scattering in open systems:

- to have more insight on the physics
- for a rigorous understanding of the interference patterns (analysis)
- to simplify the material design of the scattered in to maximize assigned scattering features (*synthesis*)

I MIM: isolated sphere

Sources and sinks

Ph.D NFORMATION TECHNOLOGY *<u>electrical engineering</u>*

Vortices

I MIM: isolated sphere

I MIM: what done so far

High-index dielectrics

Physical Review Research (2020)

Electromagnetic coating

J. Opt. Soc. Am. B 34, 1524-1535 (2017) Opt. Lett. 44, 1972-1975 (2019)

Hybridization theory

Quasi-1D nanoribbon

IEEE Transactions on Antennas and Propagation, vol. 66, pp. 2505-2514 (2018)

II Plamon quantization: why?

Statement

At the basis of many new applications in quantum technology, such as single-photon nonlinear optics, nonclassical states of light, photonic gates and others, there is the need of reaching an efficient atom-photon interaction.

Issue

The atoms, due to the low scattering cross section, don't like to interact with light.

Plasmonic structure can localize light beyond the diffraction limit

A proper quantum description of the localized plasmon NPs

- is needed in some conditions (e.g. strong coupling regime in the analysis of quantum emitters)
- can give a real insight in the physics of the phenomenon

II Plamon quantization (closed/quasistatic)

II Plamon quantization (closed/quasistatic)

$$H = \sum_{n} \left(\frac{p_m^2}{2M_m} + \frac{1}{2} M_m \Omega_m^2 q_m^2 \right) \longrightarrow \widehat{H}_M = \sum_{m} \hbar \Omega_m \left(\hat{b}_m^+ \hat{b}_m + \frac{1}{2} \right)$$

Canonical Quantization

Definition of plasmon

A quantum of energy in the collective motion of electron.

- Infinite lifetime
- Energy $\hbar \Omega_{\rm m}$

Ex. Gold $k_p R = \pi$ means R = 144 nm Silver $k_p R = \pi$ means R = 230 nm

This theory has been applied to compute the *radiative decay rate* and the *frequency shift* of the plasmon oscillations in arbitrary shaped nanoparticles and dimers.

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Roberto Tricarico

| <u>Q</u>

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Roberto Tricarico

| <u>Q</u>

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Blockade phenomenon

Another photon cannot be absorbed!

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

But in real life the probability of interaction is too small!

| q

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

But in real life the probability of interaction is too small!

| q

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Photons in linear media do not interact Effective photon-photon interaction exploiting the *nonlinearity of the atoms*

Even if an atom is a highly nonlinear object, the nonlinearity is very hard to be measured: it is LOCAL in space and NARROW in time.

A **Rydberg atom** is an atom excited to a *high principal quantum number state*. These states exhibits a very long lifetime and a huge dipole momentum, able to shift the energy levels of the surrounding atoms, within the blockade sphere.

A Rydberg atom acts as a 'super atom'. It provides a NONLOCAL blockade mechanism able to introduce an effective nonlinear photon-photon interaction.

A Rydberg atom acts as a 'super atom'. It provides a NONLOCAL blockade mechanism able to introduce an effective nonlinear photon-photon interaction.

A Rydberg atom acts as a 'super atom'. It provides a NONLOCAL blockade mechanism able to introduce an effective nonlinear photon-photon interaction.

A Rydberg atom acts as a 'super atom'. It provides a NONLOCAL blockade mechanism able to introduce an effective nonlinear photon-photon interaction.

A Rydberg atom acts as a 'super atom'. It provides a NONLOCAL blockade mechanism able to introduce an effective nonlinear photon-photon interaction.

 R_b

r

g

 $|g\rangle$

Roberto Tricarico

 $|g\rangle$

|g|

A Rydberg atom acts as a 'super atom'. It provides a NONLOCAL blockade mechanism able to introduce an effective nonlinear photon-photon interaction.

 R_{b}

 $|r\rangle$

 $|g\rangle$

Roberto Tricarico

47

 $| \bigvee | g \rangle -$

Ph.D

MATION FECHNOLOGY

A Rydberg atom acts as a 'super atom'. It provides a NONLOCAL blockade mechanism able to introduce an effective nonlinear photon-photon interaction.

 R_b

r

 g_{\perp}

III How to quantify nonlinearity?

• Classical Point of view

Nonlinear relation between input and output $E_{output} = f(E_{input})$

• Quantum point of view

$$g^{(2)} = 1$$
 NL Dynamical $g^{(2)} < 1$
System

Can turn a classical field (e.g. a coherent state) into a purely quantum state of light. The signature of the pure quantum state of light in the *antibunched* behavior, i.e. $g^{(2)}(t,t) < 1$.

$$g^{(2)}(t,t') = \frac{\langle \psi | E^{-}(t) E^{-}(t') E^{+}(t') E^{+}(t) | \psi \rangle}{\Omega^{4} \langle \psi | E^{-}(t) E^{+}(t) | \psi \rangle \langle \psi | E^{-}(t') E^{+}(t') | \psi \rangle}, \qquad (t' \ge t)$$

III Rydberg-EIT

EIT= Electromagnetic Induced Transparency

It is a 3-level scheme, where an inference phenomenon between 2 shining laser makes the intermediate level transparent

III Nonlinearities in R-EIT

Roberto Tricarico

NFORMATION ECHNOLOGY

THANK YOU

Roberto Tricarico

Light-Matter Interaction in Open Systems: from Nanoparticles to Atoms

