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Introduction (1/3)

rsjudal Networking and Media Mobile Devices 1
* Facebook o Call
* Twitter * Text/|M
» Linkedin » Location
* Blogs * In-App Activity
» Site Commeants

Big Data Sources
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Introduction (2/3)

» ..from a technological point of view
— OSNs are enabled as Internet applications with a set of functionalities:

* information sharing capabilities;

e user generated content
management;

e support by means of several tools
to different ways of
communication and collaboration
among users.
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Introduction (3/3)

» ..from a sociological perspective

— OSNs are social structures constituted by a set actors (individuals or
organizations), sets of dyadic ties and other social interactions, often
instantiated through the shared information.
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OSN modelling (1/2)
3 I

* Asocial network is represented as a directed A VN

graph, with each person (customer) as a B /o i,w
node (Kempe et al.) ]{Q\
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* A social network is

@
Sy

) Eh.] represented as a tri-partite
; _“" ; graph, composed by user,
‘~: :} | social media object and Tag
| ;'~"’ By e )\ u / (Qui et al.)
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Tags

Multlmedla objects
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OSN modelling (2/2)

A social network is represented
as a graph in which only the
relationships established
between users, tags and
multimedia objects are modelled
through hyperarc (Liu et al.)
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A social network is represented a
unified hypergraph to model
multi-type objects ant the high-
order relations.(Bu et al.)
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Proposed MSN Definition

“integrated social media networks that combine the information
on users, belonging to one or more social communities, together
with all the multimedia contents that can be generated and used
within the related environments”.

‘ li [m flickr
Theory Social Theories { Graph Theories l
s '\I
Social Netwark . . Community Information
. _.-fI
'Appli“tiom “rﬂl Malk&ti-ng \
- . \
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MSN Model (1/2)

* Inourvision, a MSN is basically composed by two different
entities:

e Users - that correspond to the set of persons and organizations with
related attributes belonging to one or more social communities.

* Multimedia Objects - the set of multimedia resources that can be
shared within a MSN community. High level (metadata) and low level
information (features) can be properly and jointly used in our model.
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MSN Model (2/2)

I..-‘- I’r+
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image similarity el e namerm €g annotation
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annotaion multimedia

O assets Qusers [ ] objects
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Influence analysis (1/2)

* Traditional communication theories state that a minority of users, called
influentials, excel in persuading others.

* Aninfluence analysis problem can be faced using two steps:

1. adiffusion model is defined with the aim of describing the influence spread
in the network;

2. a maximization algorithm is exploited to identify the set of nodes such that
their activations maximize the diffusion or the propagation of influence.

* The selection of the most influence nodes is an optimization problem that
has been proven by Kempe et al. to be NP-Hard.

S* = argmax|s|>,0(S)

* Greedy strategies exploiting a non-negative, submodular and monotone
influence function can obtain a solution that is no worse than (1-1/e) of
the optimal one.
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Influence analysis (2/2)

(a)t =0 (b)t=1

Linear Threshold (LT): each node has a
threshold w, and it becomes active only if
the sum of the probabilities of its neighbors
is greater than the threshold:

2 en@)ns(e,) Puw 2w,
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My Proposal: Influence Model (1/7)
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My Proposal: Influence Model (2/7)

We assume the existence of a finite set of Actions (A) representing all the
possible interactions among the set of Users (U) and the set of Objects
(O) in one ore more online social networks, which can be properly
captured during user browsing sessions exploiting log information.

| .

Log tuple
A log tuple can be defined by the information / = (a,u,0, A1, -+, Ax),
where a€ A, ue U, o € O and \q,---, Ak, are particular attributes (e.g.,

timestamp, type of reaction, text and tags of a comment, etc.) used to
describe an action.

14
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My Proposal: Influence Model (3/7)

Reaction Operator

The Reaction Operator reac®t(ay, a») between two actions a; of user u;
and a; of user u; — and both the actions are performed on the same object
o (or on similar objects?) — returns the probability that a, occurs after a;
within the interval At.

“The evaluation of such condition needs the defiinition of a similarity
function between two objects.

Giancarlo Sperl 15
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My Proposal: Influence Model (4/7)

Influence Operator

Let vy, up € U be respectively two users, we say that u; — u», if each
T

action a,, € A, (t) of user u; at time t determines an action
a,, € Ay (t,At) of user uy in the interval |t,..., At] within a log L:

up — up <= Vt; € Tday € Ay, (ti), a2 € Ay (ti, At) € L

reac®t(ay,ax) > 7

T ={t1,t2,...,tm} being a sequence of temporal instants such that
t1 <ty <...tm and 7 € [0,1] a probability value.

16
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My Proposal: Influence Model (5/7)

Influence Diffusion

Let u1,u> and w3 three users and L a given log,

.
uy —1> us
$ T = U] — U3 (1)
U — U3 73
\ T2

73 < min(tt, 72).

Giancarlo Sperl 17
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My Proposal: Influence Model (5/7)

2+ Definitions:
R

o Nyv
= Reactivity (p;) of uw.r.t. v: R
2ieN LLTRYY
nR
. U,V
= Shareability (p;) of uw.r.t.vi—27;
ny
< Proposed Influence Operators:
ﬂﬂ R
— i, v + U, v
D axprt Brpz=axg=tp-*h =2,
My | M
2) P1*Pz = E;j EN “ﬂ,vi i "ﬁ
nR nk
3) Norm(p + pz) = Norm(z—2— + %
Ei eN Muw; Ty,

eLECTRICALEeNGINEERING



My Proposal: Influence Model (7/7)

Influence Graph
An Influence Graph is a labeled graph G = (V/, E, 7) where:
@ V is the set of nodes such that each v € V corresponds to a user
u e U,
@ E C V x V is the set of edge (with no self-loops);

o 7:V xV —[0,1] is a function that assigns to each edge e = (v;, vj)
a label, representing the probability that user u; can influece user u;.

Giancarlo Sperl 19
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Stochastic Algorithm

User-Multimedia Object Matrix

Let U, M, UP,PM be respectively the sets of users, multimedia objects
and user-relevant path and relevant path-multimedia objects matrixes, we

define the User-Multimedia Object Matrix as:

UM = {umuimj} — Z( H UPu;py * pmpkmj‘)

uieU preP

MlSTER @BTERX 5 g
\
/
i MO, . 0
) 0
!
/

T pleos ” 0

o}

GIANK 0

Publishing
Like
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The ABC algorithm works in according

Bio-inspired Algorithm

to two fundamental steps:

1.

iNFD_FIMATIDN tECHNOLOGY
eLECTRICALEeNGINEERING

an initial user ranking (based on their
centrality in the Influence Graph) is
performed (to determine the most
suitable employer bees to lead the
food search campaign together with a
set of scouts represented by their
neighbors in the network);

a top-k selection of the most
influential users within the initial set
(represented by the employer or
scout bees that are effective leaders
on the base of their waggle dance) is
carried out in an iterative manner.

THE WAGGLE DANCE

I A bee finds a food source

w l]!l( out k\P](H mg

/

7”7’
/ 2 It returns to the hive /
to communicate \ =~
location. 5/
a its JJ
S /A I;- \
~ N
ﬁ N Using the sun’s [m\’i(ion\ Y
\ as a guide, it waggles its N

.'}'[Cl' l'U(C}\;llg l";(,’)(,‘ dll'(‘(':‘lﬂn\;.» l’(’d‘\‘ i” (h(‘ (Iil'(_‘cli“n U{ \
the rest of the colony can fly off the food sorirce: o

|
to harvest the newly found supplies rr 7
-
-
A"
»

extra Shll(ﬂL‘,\. It }HlS I7L‘L‘l1

7 i
r estimated that for every /

\_ The food’s distance is
N\ C()”]n]unicﬂl(‘d h) ;l(](“ng

= " 100 metres from its home, /
5 The more plentiful the food sourc’c.\ the bee will waggle for an V4
the longer the dance will last. \ additional 75 mki‘lvlirécu)mlsv /
~ ”

e —— —
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Game Theory Approach

e Qur contributions:

— Adopt the Game Theory and formulate a
Combinatorial Multiarmed Bandit Problem

— Aim to maximize the spread and to learn
the influence probabilities simultaneously

* Leads to classic exploration vs.
exploitation trade-off

— Consider node-level feedback: you only
need to know who was influenced

« CMAB algorithm:

— Each of m arms has reward distribution with
unknown mean

— Based on MAB, but the arms can trigger others
arms

— In each round t a subset of arms A is chosen and
reward is function of these arms

— Update and improve our knowledge

iNFORMIATION tECHNOLOGY G | adanca rl O S p e r|\| 22
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Proposed Architecture

Data Ingestion

|

Data Collection

-4

Staging Area

@@
Nt
—— =

Giancarlo Sperl

Influence
Maximization

Community
Detection

SIMONA

HyperX

Spark SQL

Spark
Streaming

Spark ML

GraphX

BlinkDB

Tacnhyon

Spark DataFrame API

Java

E Scala Python R

SparkCore
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Experimental Protocol

Dataset

Complete 99.000.000
Analyzed 14.663.918 3.101.814 2.827.439

(*) Social features change on a day to day basis

Influence estimation methods:
1. Trivalency model
2. Weighted cascade
3. Different influence operators

Hardware details:
* Microsoft Azure with 2 compute optimized instances (2 x 8 CPU and 16 GB
RAM)

" iINFORMATION tECHNOLOGY G |a NCca rl ) S p e r|\| 24
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Evaluation without Similarity
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Figure a: Influence Spread with TIM on P1

Figure b: Influence Spread with IMM on P1
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Influence Spraac

Evaluation with Similarity
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Figure (a):Influence Spread with IMM on P2
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Evaluation

SPREAD ACHIEVED
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Community Detection

Community detection definitions:

1. adensely connected subset of nodes that is only sparsely linked to the remaining network
2. groups of vertices that probably share common properties and/or play similar roles within the

graph.

3. acommunity as a group of network nodes, within which the links connecting nodes are dense but

between which they are sparse

VERTEX CLUSTERING
* Embeding in metric space
* Spectral clustering
* Vertex similarity
* Walktrap

COHESIVE SUBGRAPH DISCOVERY
* Structure enumeration (Cliques,K-
cores)
* SCAN

Community

Detection
Method

QUALITY OPTIMIZATION
+ Density measures

* Cut-based measures

* Modularity Maximization

iINFORMATION tECHNOLOGY
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MODEL BASED
* Dynamical processes (Label
Propagation, MCL)
* |Inference/Model Selection
(InfoMap)

DIVISIVE
¢ Inter-community edge removal
* Central vertex removal
¢+ Min-cut /Max-flow
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My Proposal

RelP,={Publish, Comment}
RelP,={Publish, Similarity, Comment}

diffusion Pregel
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RP, RP,
W”= 1x08x1) +(1x0.7x1)=15
| incremental expantion | conductance score
Iteration 1
Seed 1 3 0661| p(C) = — cut(C)
3,4 0,581 min{deg(C,), deg(C,)}
3,4,6 0,495
3,4,6,5 0,427
3,4,6,57 0,394
3,4,657,1 0,367
3,4,65712 0,358
Community 1 3,4,6,57,1,2
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Effectiveness Evaluation (1/2)

Zackary’s karate club (*)

— (34 nodes, 78 pairwise links) =2 2 communities

 Compared algorithms:

— Fast Greedy

— Label Propagation o
@ggﬂg@’o

— InfoMap & oo
— Walktrap qﬁfﬁ-"‘, 7zl VA 00 g O
* Quality metrics: gﬂ v/ ke o -
¥ ¥ ) Vs 0 - 3]
— NMI 0 / | o = SN :
— AR| 6@ | 00 . . )
— TP—FP ! AR U o
o ‘ QO o
¢ ©00© o 0

*https://networkdata.ics.uci.edu/data.php?id=105

a
ite
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Effectiveness Evaluation (2/2)

Experimental 1 Results

Normalized Mutual Information (NMI) Adjusted Rand Index (ARI)
1 1
09 0,9
08 08
0,7 0,7
0,6 0,6
0,5 05
04 04
03 03
0,2 0,2
01 01
0 0
FAST GREEDY RELEVANT PATH LABEL WALKTRAP INFOMAP FAST GREEDY LABEL RELEVANT PATH NFOMAP WALKTRAP
PROPAGATION PROPAGATION
Relevant Path Infomap Fast Greedy Label Walktrap
TP FP TP FP TP FP TP FP TP FP
Community 1 88,24% 17,65% 94,12% 11,76% 100,00% 5,88% 94,12% 5,88% 52,94% 0,00%
Community 2 82,35% 0,00% 52,94% 5,88% 64,71% 0,00% 64,71% 5,88% 52,94% 0,00%
Community 3 0,00% 100,00% 0,00% 100,00% 0,00% 100,00% 0,00% 100,00% 0,00% 100,00%
Community 4 0,00% 100,00%

Community 5 0,00% 100,00%
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Qualitative Evaluation

Without Similarity 115 9585
Similarity 2 0.90 11 13452
Similarity > 0.80 26 29700
Similarity > 0.70 106 224412
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‘\ - J
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Conclusions

e This dissertation is mainly focused on the design of novel data model
relying on hypergraph data structure for representing MSN sufficiently
general with respect to:

1. A particular social information network;
2. The different kinds of entities;

3. The different types of relationships;

4. The different applications

* The features of the proposed model have been used to deal with the
following two challenges:

— Influence Maximization
— Community detection

 The evaluation, made on Flickr, shows:
— how the proposed approaches can be properly faced IM problem leveraging the introduced model.

— how the proposed community detection approach has similar performance w.r.t. the well-known
algorithms

— How the proposed approach can be properly faced with community detection problem leveraging
the features of heterogeneous networks.
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