

Stefano Rosiello

Tutor: prof. Domenico Cotroneo

XXXI Cycle - I year presentation

Overload Management in Network Function Virtualization

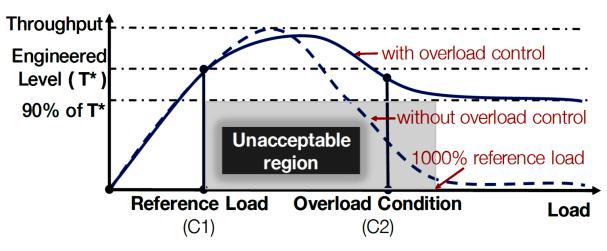
My Background

- Master of Science:
 - Cum laude in Ingegneria Informatica at University of Naples - Federico II
- DIETI group:
 - Dependable Systems and Software Engineering Research Team (DESSERT)
- Type of Fellowship: PhD Student Grant
- Industrial Collaboration:
 - Huawei Technologies Co. Ltd. within an industrial research project with the aim to identify possible solutions to overload in NFV.

Network Softwarization

- Network functions implemented in software by leveraging virtualization technologies enabling
 - ☐ Minimization of HW dependency
 - Consolidation onto high-volume COTS HW

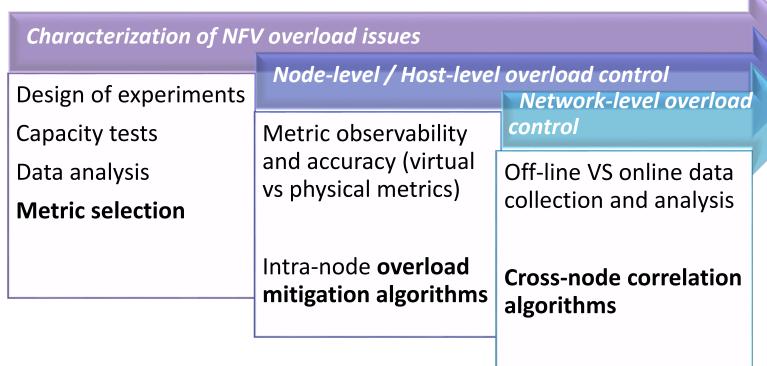
Its success depends upon the ability to comply with carrier-grade requirements



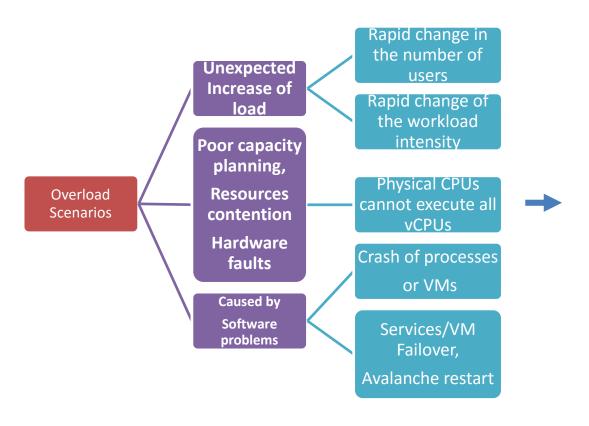
Overload Control Requirements in NFV

☐ It should maximize service throughput/availability and ensure high-priority services when an overload condition occurs

Service name [default SA level]		Normal	Overloaded	Heavily Overloaded	Emergency Situation [dedicated SA level]	
Video call service	Video [2]	available [2-l]	available [2-l]	Degraded to Image service (2-III*	Not available (pre-empted)	
	Voice [1] (registered as ETS)	available	available	available	available	


☐ It should be able to handle at least 90% of its engineered throughput even in the case of 1000% overload (i.e. 10 times)

My research activities

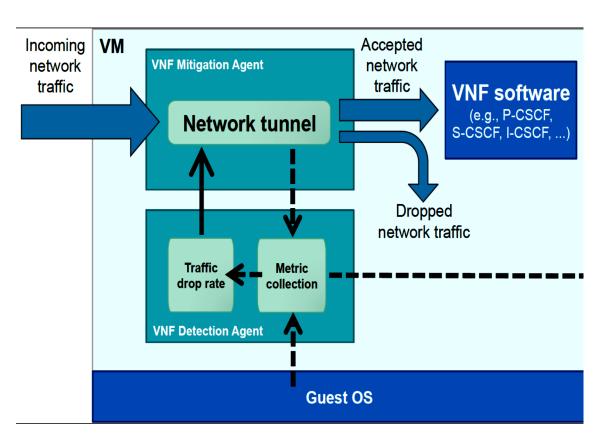

- What are the overload causes in NFV ?
- How an overload condition can be detected?
- What action should be taken to guarantee the NFV requirements?

Characterization of overload issues

☐ Performance analysis of an IP Multimedia Subsystem (IMS) under overload conditions

■ Metric selection

Virtual CPU consumption metric is capable to detect all the considered overload conditions.

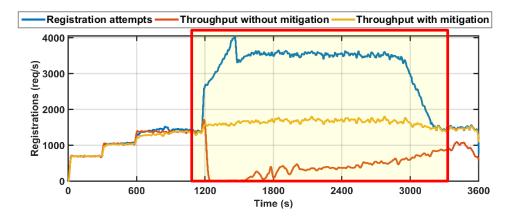

☐ Actions

Overload control should react within 10 seconds to protect service from failures by rejecting the traffic.

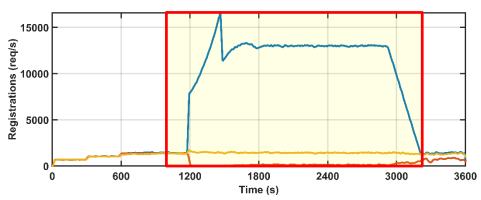
The proposed solution

☐ A closed control loop approach to estimate the node capacity

- A Detection module
- 1. collect metrics
- 2. calculate the amount of traffic to drop
- A Mitigation module
- 1. Reject new sessions according to the detection agent status


Some results

☐ Case Study:


IP Multimedia Subsystem (IMS)

Load spike (150%) injected at 1200s

Load spike (1000%) injected at 1200s

Products

Journal Paper

To be published: D. Cotroneo, R. Natella, <u>S. Rosiello</u> – "**NFV Throttle: An Overload Control Framework for Network Function Virtualization**" – IEEE Transaction on Network and Service Management

Training activities and next year

	year 1							year2	year3		
		1	2	3	4	5	6				
	Estimated	Nov-Dec	Jan-Feb	Mar-Apr	May-Jun	Jul-Aug	Sep-Oct	Summary	Estimated	Estimated	Check
Modules	20	0	7	0	3	0	9	19	15	0	30-70
Seminars	5	0	0,8	0,8	1,2	0	0,5	3,3	5	5	10-30
Research	35	10	2	9	6	10	1	38	40	55	80-140
	60	10	9,8	9,8	10	10	11	60	60	60	180

- During the next year I will focus on:
 - the overload management in distributed multi-tier software architectures, on which complex NFV services are implemented.

