
Vincenzo Riccio
Tutor: Anna Rita Fasolino
XXXI Cycle - III year presentation

ENHANCING AUTOMATED GUI
EXPLORATION TECHNIQUES FOR
ANDROID MOBILE APPLICATIONS

Personal Background

▪ Graduation: MSc with honors in Computer Engineering at the
University of Napoli Federico II

▪ Research Activity: Software Testing Automation

▪ Research Field: Software Engineering

▪ Collaborations:

▪ Candidate: Vincenzo Riccio

▪ Cycle: XXXI

▪ Fellowship: PhD grant

Vincenzo Riccio 2

Research Group

▪ REsEarch gRoup of Software Engineering (REvERSE) at the
University of Naples Federico II

▪ Mission: REvERSE@Unina aims at developing novel methods,
techniques and tools that advance development and evolution of
software systems. We are interested in all the software lifecycle
processes, with a special focus on: Software Maintenance, Reverse
Engineering, and Testing

Vincenzo Riccio 3

Credits Summary

1st Year 2nd Year 3rd Year
Entire PhD

Course
Check

Modules 17 19 0 35,5 30-70

Seminars 10,2 5,2 2,7 18,1 10-30

Research 34 46 58 138 80-140

Total 61,2 70 61 191,6 >180

Vincenzo Riccio 4

Experience Abroad

▪ Topic: Novel
evolutionary search
algorithms for
testing mobile
applications

▪ Start: 17 April 2018

▪ End: 7 August 2018

Prof G. Fraser,
Chair of Software

Engineering II

Vincenzo Riccio 5

Smartphone users worldwide

▪ There is a constant
demand for new
mobile apps

▪ Android is today
the world’s most
popular mobile
operating system

Vincenzo Riccio 6

Automation Tools

▪ The demand for app quality
has grown together with
their spread

▪ Automation tools can
facilitate software quality
engineering activities since
they save humans from
routine, time-consuming and
error-prone manual tasks

Vincenzo Riccio 7

Automated GUI Exploration
Techniques (AGETs)

D. Amalfitano, N. Amatucci, AM. Memon, P. Tramontana, AR. Fasolino, “A general framework for comparing
automatic testing techniques of Android mobile apps”, Journal of Systems and Software, 2017

Vincenzo Riccio 8

Challenges

Enanche AGETs by:

1. targeting mobile-specific features

2. exploiting app-specific knowledge that only human
users can provide

Vincenzo Riccio 9

Challenge #1

Targeting mobile-specific features

The Android Activity Lifecycle

Vincenzo Riccio 10

Android Activity Lifecycle

▪ An Android app is composed by one or more Activities

▪ Each Activity represents a single screen

▪ The Android Framework defines a peculiar lifecycle for Activity
instances

Vincenzo Riccio 11

Lifecycle Event Sequences

▪ Mobile-specific events able to exercise the Activity lifecycle

Vincenzo Riccio 12

DOC
BF
STAI

Motivating Example: GUI Failure

▪ GUI failures consist in the manifestation of an unexpected GUI
state

Background

Foreground

Vincenzo Riccio 13

Motivating Example: GUI Failure

▪ GUI failures consist in the manifestation of an unexpected GUI
state

Background

Foreground

Vincenzo Riccio 14

Exploratory Studies

Vincenzo Riccio 15

Exploratory Study 1

▪ 68 open-source apps

▪ 86% of the considered apps are affected by GUI failures due to
orientation changes

▪ Most of the detected failures involve Dialog objects missing from
the GUI after the DOC

▪ 6 classes of common faults causing GUI failures have been
identified

Vincenzo Riccio 16

Exploratory Study 2

▪ 15 industrial-strength apps

▪ All the considered apps are affected by GUI failures due to
orientation changes

Vincenzo Riccio 17

The ALARic Approach

Vincenzo Riccio 18

App Launch

Current GUI
State

Description

Termination
Condition
Evaluation

Input Event
Sequence
Execution

Input Event
Sequence
Planning

Lifecycle Event
Sequence
Execution

Oracle
Evaluation

[Is the
termination
condition
satisfied?]

No

Yes

[GUI state
never
encountered
before?]

No

Yes

ALARic Workflow Example

A

Vincenzo Riccio 19

ALARic Workflow Example

A B

DOC

Vincenzo Riccio 20

ALARic Workflow Example

A B

DOC

B = A

Vincenzo Riccio 21

ALARic Workflow Example

A CB

DOC Click

on +

Vincenzo Riccio 22

ALARic Workflow Example

A CB D

DOC DOCClick

on +

Vincenzo Riccio 23

ALARic Workflow Example

A CB D

DOC DOCClick

on +

D ≠ C

Vincenzo Riccio 24

ALARic Workflow Example

A CB D

DOC DOCClick

on +

D ≠ C

Vincenzo Riccio 25

ALARic Workflow Example

A C

D = A

B D

DOC DOCClick

on +

Vincenzo Riccio 26

Experimental Results

▪ ALARic detected 106 distinct GUI failures in 15 analyzed apps

Vincenzo Riccio 27

Challenge #2

Exploiting app-specific knowledge
that only human users can provide

Gate GUI Unlocking

Vincenzo Riccio 28

Gate GUIs

Login Gate GUI Settings Gate GUI

Vincenzo Riccio 29

Gate GUI Locked

4 Activities

1 Mb

Vincenzo Riccio 30

Gate GUI Unlocked

18 Activities

380 Mb

Vincenzo Riccio 31

The juGULAR Approach

Vincenzo Riccio 32

App Launch

Current GUI
State

Description

Termination
Condition
Evaluation

Input Event
Sequence
Execution

Input Event
Sequence
Planning

ML Based Gate
GUI Detection

C&R Based Gate
GUI Unlocking

[Is the
termination
condition
satisfied?]

No

Yes

[Gate GUI
detected?]

No

Yes

Experimental Evaluation

Vincenzo Riccio 33

▪ Comparison between
▪ juGULAR with Hybridization Disabled (JHD)

▪ juGULAR with Hybridization Enabled (JHE)

▪ The state-of-the-practice tool, Monkey

Covered Activities

Vincenzo Riccio 34

Network Traffic Bytes

Vincenzo Riccio 35

Manual Intervention Percentage

Vincenzo Riccio 36

Vincenzo Riccio 37

Vincenzo Riccio 38

Vincenzo Riccio 39

Vincenzo Riccio 40

Products (1/2)
▪ Journal Papers:

▪ D Amalfitano, V Riccio, ACR Paiva, and AR Fasolino (2018).
Why does the orientation change mess up my Android
application? From GUI failures to code faults. Software
Testing, Verification and Reliability, 28(1). Wiley.
doi:10.1002/stvr.1654.
▪ In collaboration with the University of Porto

▪ Wiley’s #Top20Article: Amongst articles published by Wiley
between July 2016 and June 2018, this article received some of
the highest downloads in the 12-months post online publication

▪ D Amalfitano, V Riccio, N Amatucci, V De Simone, and AR
Fasolino (2018) Combining Automated GUI Exploration of
Android apps with Capture and Replay through Machine
Learning. Information and Software Technology, 105(1).
Elsevier. doi:10.1016/j.infsof.2018.08.007.

Vincenzo Riccio 41

Products (2/2)
▪ Conference Papers:

▪ D Amalfitano, V De Simone, A R Fasolino and V Riccio (2015).
Comparing Model Coverage and Code Coverage in Model Driven
Testing: An Exploratory Study, In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering
Workshop (ASEW), Lincoln, NE, 2015, pp. 70-73. doi:
10.1109/ASEW.2015.18

▪ Domenico Amalfitano, Nicola Amatucci, Vincenzo De Simone,
Vincenzo Riccio, and Fasolino Anna Rita (2017). Towards a Thing-In-
the-Loop approach for the Verification and Validation of IoT
systems. In Proceedings of the 1st ACM Workshop on the Internet of
Safe Things (SafeThings'17), Rasit Eskicioglu (Ed.). ACM, New York,
NY, USA, pp. 57-63. doi: 10.1145/3137003.3137007

▪ Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino
(2018). Is This the Lifecycle We Really Want? An Automated Black-
Box Testing Approach for Android Activities. The Joint Workshop of
4th Workshop on UI Test Automation and 8th Workshop on TESting
Techniques for eventBasED Software (INTUITESTBEDS 2018). ACM (In
press).

Vincenzo Riccio 42

Extra Slides

Vincenzo Riccio 43

Motivating Example: Crash

▪ A crash occurs when an app stops functioning
properly and exits unexpectedly

Orientation

Change

Vincenzo Riccio 44

Missing GUI Failure

Vincenzo Riccio 45

Double

Orientation

Change

Extra GUI Failure

Vincenzo Riccio 46

Double

Orientation

Change

Wrong GUI Failure

Vincenzo Riccio 47

Double

Orientation

Change

ALARic Description

▪ ALARic (Activity Lifecycle Android Ripper), a novel fully
automated Black-Box Event-based testing technique to
detect issues tied to the Activity lifecycle

▪ It combines:

▪ The traditional testing approaches based on dynamic app
exploration

▪ A strategy that systematically exercises the Activity lifecycle on
each GUI state encountered during the exploration

▪ It relies on:

▪ Lifecycle Event Sequences, mobile-specific events able to
exercise the Activity lifecycle

▪ Testing oracles to detect crashes and GUI failures tied to the
Activity lifecycle

Vincenzo Riccio 48

Experimental Evaluation

▪ GOAL: Evaluate the ability of ALARic to
automatically detect crashes and GUI failures
tied to the Activity lifecycle

▪ RQ1: How effective is the ALARic tool in detecting
issues tied to the Activity lifecycle in real Android
apps?

▪ RQ2: How does the effectiveness of the ALARic tool
in detecting crashes tied to the Activity lifecycle in
real Android apps compare to the state-of-the-
practice tool, Monkey?

Vincenzo Riccio 49

Objects

▪ 15 apps that
are distributed
by Google Play
Store whose
source code is
available in the
F-Droid
repository

ID App Version Activities

A1 A Time Tracker 0.21 5

A2 Port Knocker 1.0.9 6

A3 Who Has My Stuff? 1.0.27 4

A4 Agram 1.4.1 5

A5 Alarm Klock 1.9 5

A6 Padland 1.3 10

A7 Syncthing 0.9.1 12

A8 Anecdote 1.1.2 3

A9 Amaze File Manager 3.1.2 RC4 5

A10 Google Authenticator 2.21 5

A11 BeeCount 2.3.9 8

A12 FOSDEM companion 1.4.6 8

A13 Periodical 0.30 6

A14 Taskbar 3.0.2 23

A15 SpaRSS 1.11.8 8

Vincenzo Riccio 50

Metrics

▪ To evaluate the effectiveness of ALARic in detecting GUI
failures:
▪ #DGFDOC number of distinct GUI Failures triggered by DOC

▪ #DGFBF number of distinct GUI Failures triggered by BF

▪ #DGFSTAI number of distinct GUI Failures triggered by STAI

▪ #DGFTOTAL number of distinct GUI Failures triggered by the DOC, BF, STAI

▪ To evaluate the effectiveness of both the tools in finding
Crashes:
▪ #DCDOC number of distinct crashes triggered by DOC

▪ #DCBF number of distinct crashes triggered by BF

▪ #DCSTAI number of distinct crashes triggered by STAI

▪ #DCTOTAL number of distinct crashes triggered by the DOC, BF, STAI

Vincenzo Riccio 51

Experimental Procedure

Object App
Package Kit

ALARic

Monkey

1. App Testing 2. Data
Collection &

Validation

Detected
Failures

Distinct
Validated
Failures

Detected
Failures

Vincenzo Riccio 52

Experimental Procedure

Object App
Package Kit

ALARic

Monkey

1. App Testing 2. Data
Collection &

Validation

Detected
Failures

Distinct
Validated
Failures

Detected
Failures

9 one-hour runs with

ALARic
3 runs with DOC

3 runs with BF

3 runs with STAI

Vincenzo Riccio 53

Experimental Procedure

Object App
Package Kit

ALARic

Monkey

1. App Testing 2. Data
Collection &

Validation

Detected
Failures

Distinct
Validated
Failures

Detected
Failures

9 one-hour runs

with Monkey

Vincenzo Riccio 54

Experimental Results: RQ1

▪ ALARic detected 106 distinct GUI failures and 8
crashes tied to the Activity lifecycle in the 15
analyzed apps

Vincenzo Riccio 55

Experimental Results: RQ2

▪ ALARic outperformed
Monkey in the ability to
detect issues tied to the
Activity lifecycle
▪ In total ALARic triggered more

crashes than Monkey

▪ Monkey seeds events that
exercise the Activity lifecycle,
e.g. orientation changes, back
button press, but it applies
them without a proper
strategy

App #DCALARic #DCMonkey

A4 1 1

A6 1 0

A7 1 0

A9 2 0

A11 1 0

A15 2 1

Total 8 2

Vincenzo Riccio 56

Lesson Learned

▪ The debugging activity we performed in the failure
validation step showed us that the faults causing the
failures were mostly located outside the code that
overrides the lifecycle callback methods

▪ Testers should look for faults that may affect the lifecycle
of the Activities also outside the methods that override the
lifecycle callbacks

▪ Developers should correctly use the Android framework
components since they may cause inconsistencies in the
app behavior at runtime when Lifecycle Event Sequences
occur

Vincenzo Riccio 57

Lifecycle Event Sequences: DOC

Vincenzo Riccio 58

Lifecycle Event Sequences: DOC

Vincenzo Riccio 59

Lifecycle Event Sequences: BF

Vincenzo Riccio 60

Lifecycle Event Sequences: STAI

Vincenzo Riccio 61

False Positive Example #1

DOC

BF

STAI

Vincenzo Riccio 62

False Positive Example #1

DOC

BF

STAI

Vincenzo Riccio 63

False Positive Example #2

BF

Vincenzo Riccio 64

False Positive Example #2

BF

Vincenzo Riccio 65

GUI XML Description

Vincenzo Riccio 66

GUI Textual Information Content

Vincenzo Riccio 67

ML-based Classifier Training Process

Vincenzo Riccio 68

Gate GUI Classifiers’ Performance

Vincenzo Riccio 69

Combining AGET and C&R

Vincenzo Riccio 70

The juGULAR Platform

Vincenzo Riccio 71

Gate GUI Detector

Vincenzo Riccio 72

Experimental Evaluation
▪ GOAL: Understand how the hybridization proposed

by juGULAR does impact the ability of fully
automated GUI exploration techniques in analyzing
apps and at what cost.

▪ RQ1: How does the hybridization introduced by juGULAR
affect the effectiveness of an automated exploration
technique?

▪ RQ2: How does the manual intervention required by
juGULAR affect the costs of the hybrid exploration
approach?

▪ RQ3: How does the exploration effectiveness of juGULAR
compare to the effectiveness of the AGET implemented
by the state-of-the-practice Monkey tool?

Vincenzo Riccio 73

Objects

Vincenzo Riccio 74

Metrics

Vincenzo Riccio 75

Covered Lines Of Code

Vincenzo Riccio 76

