

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Breast Cancer Analysis in DCE-MRI

Gabriele Piantadosi (PhD Candidate) XXIX Cycle - III year presentation Supervisor: Prof. Carlo Sansone Co-Supervisor: Prof. Mario Sansone

PhD candidate

- **Graduation:** MSc in Computer Engineering
- Group: PRIAMUS
- Fellowship: MIUR research grant
- Research Field: Breast Cancer Analysis in DCE-MRI
- Study Activity:

		Credits year 1						Credits year 2					Credits year 3													
	ed	1	2	3	4	5	6	ry	þe	1	2	3	4	5	6	Ŋ	þə	1	2	3	4	5	6	ry	_	×
	Estimate	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summa	Estimate	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summa	Estimate	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summa	Tota	Chec
Modules	26	0	3	0	3	3	11	20	15	3	7	0	3	0	6	19	5	0	0	0	0	0	0	0	39	30-70
Seminars	13	2.4	1	4.8	1	1.5	2.3	13	12	0.2	0.9	0	0	6.8	0	7.9	5	0	0	0	0	0	0.6	0.6	21.5	10-30
Research	21	7.6	6	5.2	6	5.5	0	30.3	33	6.8	2.1	10	7	3.2	4	33.1	50	10	10	10	10	10	9.4	59.4	122.8	80-140
	60	10	10	10	10	10	13.3	63.3	60	10	10	10	10	10	10	60	60	10	10	10	10	10	10	60	183.3	180

- Activity abroad: six months (from April to October 2016) at the University of South Florida (USF) under the supervision of the Prof. Lawrence O. Hall (Department of Computer Science and Engineering).
- Thesis: Pattern Recognition in Breast DCE-MRI Automatic Cancer Analysis

Mammography vs. MRI for Breast

Cancer Analysis

- State of art of breast cancer screening
- No contrast = Calcifications or masses must to be inspected via biopsy
- Makes use of x-rays radiations (ionizing radiations)
- Low 2D spatial resolution up to 0.2 mm²
- Not early detection (>40 y.o. women)
- Low sensitivity (50% 70%)

- Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI):
 - High sensitivity (>95%)
 - Early detection (>20 y.o. women)
 - High 3D spatial resolution up to 0.01 mm³
 - Makes use of electromagnetic fields (non-ionizing radiations)
 - The contrast agent provides functional information of tissues directly into the image

DCE-MRI in Breast Cancer Analysis

Dynamic contrast-enhanced MRI (DCE-MRI):

- By using a contrast agent (often gadolinium) provides a four dimensional volume
 - 3 Spatial (geometric information)
 - 1 Temporal (functional information) (such as neo-angiogenesis)

• Time Intensity Curve (TIC)

- Shows the trend of the contrast agent absorption
- "Visual" assessment of a DCE-MRI among TIC
- Error prone \rightarrow Computer-Aided

- Type I: Persistent (normal or benign lesion)
- Type II: Plateau (potentially malignant lesion)
- Type III: Washout (malignant lesion)

Clinical Scenario (1/2)

The <u>Patient</u> performs a <u>DCE-MRI</u> scan providing to <u>radiologist</u> a set of files in <u>DICOM</u> format that represents a 4D volume. Then the radiologist visually analyses the whole data-set in order to <u>provide</u> a <u>diagnosis</u>.

Clinical Scenario (2/2)

A typical CAD system

Volume Extraction

- The whole 4D volume is created from the DCE-MRI data.
 - 3 Spatial dimension
 - 1 Temporal dimension

Preprocessing

 In this stage some image processing techniques are applied with the aim of improving next stages results

ROI Detection

• At this stage tumour lesions are identified as ROI (Region Of Interest), both malignant and benign

Classification

• Each ROI is classified according to its staging

BLADeS: Breast Lesion Automatic Detection System

• Aims to support radiologist through lesion detection and diagnosis stages, suggesting suspect ROIs and therapy assessment.

Breast mask extraction

- Aims to reduce the computational cost of further steps
- Select only the breast parenchyma
- Combine fuzzy c-means (FCM) clustering by exploiting 7 automatically extracted anatomical priors.

Motion Correction

- Aims to reduce motion artefacts (such as patient breathing or involuntary movements).
- Relies on a novel model-based QI.

BLADeS: Breast Lesion Automatic Detection System

• Aims to support radiologist through lesion detection and diagnosis stages, suggesting suspect ROIs and therapy assessment.

ROI Detection

- Based on SVM classifier trained on Dynamic features,
- Each voxel is labelled as: Suspect/not Suspect,
- The preselection phase strongly improves next stages results by reducing the domain of interest faced in the segmentation (by classification) stage,
- The union of the connected voxel marked as suspected represents a Region Of Interest (ROI).

BLADeS: Breast Lesion Automatic Detection System

• Aims to support radiologist through lesion detection and diagnosis stages, suggesting suspect ROIs and therapy assessment.

ROI Classification

- Based on RF classifier trained on Textural features,
- Each ROI is labelled as: Benignant ROI/Malignant ROI,
- Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) fuses spatial and temporal texture in an unique descriptor

BLADeS: Breast Lesion Automatic Detection System

• Aims to support radiologist through lesion detection and diagnosis stages, suggesting suspect ROIs and therapy assessment.

Therapy Assessment

- Predict the recurrence of the primary tumour after a surgery treatment,
- Make use of information available before or during the pre-surgery treatment,
- o Different Feature: Dynamic, Pharmacokinetic, Clinical and Geometrical,
- Two different classifiers.

•

BLADeS: Breast Lesion Automatic Detection System
 Aims to support radiologist through lesion detection and diagnosis stages, suggesting suspect ROIs and therapy assessment.

• All the results are evaluated on the following datasets

	PASCAL	E (private)	QIN (public)	ISPY1 (public)		
N. Patients	42		64	162		
Weighting	T1		T1 (fat-sup)	T1 (fat-sup)		
Protocol	Flash3D		Flash3D	Flash3D		
Mode	Coronal		Sagittal (monolateral)	Sagittal (monolateral)		
Scanner	1.5T		1.5T	1.5T		
TR/TE	8.9 / 4.76 ms		8 / 4.2 ms	$\leq 20 / 4.5 \mathrm{ms}$		
Flip Angle	25 deg		20 deg	≤ 45 deg		
FoV	370x185 n	nm²	18-20x18-20 cm ²	16-18x16-18 cm ²		
Matrix	256x128 px ²		256x192 px ²	$\geq 256 \times 192 \text{ px}^2$		
Pixel Size	1.445×1.44	15 mm ²	$0.70 \times 0.94 \text{ mm}^2$	$\leq 1 \mathrm{x1} \mathrm{mm}^2$		
Thickness	2 mm		1.4 mm	1.5-2.5mm		
Acquisition Time	56 s		18.2 s	4.5-5 min		
Time points	1 pre + 9 p	post	1 pre + 32 post	1-2 pre + 3-7 post		
	Breast Mask Extraction ROI Detection	Motion Correction ROI Classification	TherAssess	rapy sment		

Breast Mask Extraction (1/4)

Mayor issues in breast mask extraction:

- Pectoral Muscle segmentation
- Lesions that lies on the anatomical structure can change the signal intensity

• Our proposal

- Fuzzy C-means (FCM)
- Anatomical key-points
- We extract 3 different FCM volumes.
- Extract FCM along different projections helps to enhance specific anatomical features:
 - Extract FCM for each 2D slice of a specific projection
 - Fuse all the 2D slices in a 3D volume

Breast Mask Extraction (2/4)

Sagittal FCM: is able to better enhance the *armpits* cavities and to better reject the *heart* and the *sternum* tissues

Coronal FCM: easily detects the *breast-air boundary*, but shows a very high enhancement of *pectoral muscle* and *heart*.

Transversal FCM: the *pectoral muscle* edges are sharp, but fails the *armpits* cavities estimation.

S. Marrone, G. Piantadosi et al. . Breast segmentation using Fuzzy C-Means and anatomical priors in DCE-MRI" In ICPR2016

PhD Candidate: Gabriele Piantadosi – Information Technology and Electrical Engineering PhD

23/02/2017 • 15

Breast Mask Extraction (3/4)

- Combines the 3 Fuzzy C-Means (FCM) clustering
 - According to the distance (action radius) with respect to seven auto-evaluated keypoint (anatomical priors)

S. Marrone, G. Piantadosi et al. . Breast segmentation using Fuzzy C-Means and anatomical priors in DCE-MRI" In ICPR2016

Breast Mask Extraction (4/4)

Methodology	Acc.	Sen.	Sne.	Dice	Coverage	
	1100	Jein	ope.	Coeff.	Min.	Avg.
FCM + Anatomical Priors	97.9 %	95.8 %	98.4 %	92.7 %	100 %	100 %
Geometrical-based ^[1]	89.5 %	96.3 %	88.7 %	71.0 %	98.7 %	99.9 %
Atlas-based ^[2]	87.3 %	87.5 %	88.0 %	65.4 %	21.7 %	85.4 %
Geometrical-based ^[3]	86.4 %	86.5 %	86.8 %	64.2 %	20.4 %	88.5 %
Pixel-based ^[4]	82.2 %	99.9 %	79.2 %	60.0 %	100 %	100 %

[1] S.Wu et al., "Automated chest wall line detection for whole-breast segmentation in breast MR images", Med. Physics, 40(4):42301, 2013

[2] A. Fooladivanda et al., "Atlas-based automatic breast MRI segmentation using pectoral muscle and chest region model", ICBME, 258, 2014

[3] W. Lu et al., "DCE-MRI segmentation and motion correction based on active contour model and forward mapping", SNPD, 208, 2006

[4] A.Vignati et al., "Performance of a fully automatic lesion detection system for breast DCE-MRI", J. Magnetic Resonance Imaging, 34(6):1341,2011

S. Marrone, G. Piantadosi et al. . Breast segmentation using Fuzzy C-Means and anatomical priors in DCE-MRI" In ICPR2016

Motion Correction

 A MCTs not only attenuate the motion artefacts, but also fix the time course of the time intensity curve by registering the voxels, leading to a better tissue analysis.

S. Marrone, G. Piantadosi et al. . "Automatic Lesion Detection in Breast DCE-MRI" In ICIAP 2013

ROI Detection (1/2)

- Pixel-by-pixel segmentation (by classification) with use of dynamical features
 - Area under TIC (AUC)
 - Relative Enhancement at Maximum Point (ReMax)
 - Time To Peak (**TTP**)
 - Wash-In Slope (**WIS**)
 - Wash-Out Slope (WOS)

S. Marrone, G. Piantadosi et al. . "Automatic Lesion Detection in Breast DCE-MRI" In ICIAP 2013

ROI Detection (2/2)

Methodology	Accuracy	Sensitivity	Specificity	С
a) Our proposal (SVM + Pres)	98.7 %	71.6 %	98.9 %	C
b) Pixel-Based (Torricelli et al. ^[1])	98.7 %	25.8 %	99.5 %	
c) MLP Based (Fusco et al. ^[2])	87.0 %	91.0 %	87.0 %	
d) Pixel-Based (Fusco et al. ^[2])	86.6 %	75.4 %	86.6 %	

Best accuracy

Acceptable sensitivity for the voxel-based detection (few False Negative mostly at the edges)

[1] Torricelli, P., et al.: "Gadolinium-enhanced MRI with dynamic evaluation in diagnosing the local recurrence of rectal cancer", Abdom Imaging 28:1927 (2003)

[2] Fusco, R., et al.: "A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI", SSPR & SPR 2012, LNCS 7626, pp. 684-692, (2012)

Benign Lesion Segmentation

S. Marrone, G. Piantadosi et al. . "Automatic Lesion Detection in Breast DCE-MRI" In ICIAP 2013

ROI Classification

3D Local Binary Pattern from Tree Orthogonal Planes (LBP-TOP)

Authors Methodology

Accuracy Sensitivity Specificity

Our proposal LBP-TOP + Random Forest	84.6 %	80.0 %	90.9 %
Dynamic features + Naive Bayes	65.4 %	80.0 %	45.5 %
Fusco et al. ^[1] Morphological features + Decision Tree	65.4 %	53.3 %	81.8 %
Dynamic & Morphological features + Multiple Classifier System	69.2 %	86.7 %	45.5 %
Glaßer et al. ^[2] Morphological & Clinical features + Decision Tree	61.5 %	93.3 %	18.2 %

 [1] Fusco, R., et al.: "A Multiple Classifier System for Classification of Breast Lesions Using Dynamic and Morphological Features in DCE-MRI", SSPR & SPR 2012, LNCS 7626, pp. 684-692, (2012)

[2] Glaßer, et al.: "Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor's most suspect region only?", CBMS 2013, IEEE, pp. 77–82. (2013)

G. Piantadosi et al. - "LBP-TOP for Volume Lesion Classification in Breast DCE-MRI", in ICIAP2015

MCT Quality Evaluation

- Problem: how to choose a Motion Correction?
- Our studies showed that there is no single Motion Correction Technique (MCT) suitable to handle any kind of motion
- It follows that the MCT should be tailored on a patient and exam basis
- How to compare and choose the most suitable MCT for a given patient DCE-MRI exam?
 - **Traditional similarity indexes** are based on voxel signal intensity SI(x, y, z, t)
 - They are **poorly reliable** due to intensity variation caused by the contrast agent course

- A) pre-contrast image
- B) post-contrast image
- C) a deformation introduced by an improper MCT

S. Marrone, G. Piantadosi et al. – "A Novel Model-based Measure for Quality Evaluation of Image Registration Techniques in DCE-MRI" in CBMS2014 G. Piantadosi et al. - "Data-driven selection of motion correction techniques in breast DCE-MRI" in MeMeA2015.

Proposed Quality Index

• The contrast agent concentration is fitted to a **Physiologically Based PharmacoKinetic (PBPK)** model solving a non-linear curve-fitting problem in the non-linear least-squares sense

Physiologically Based PharmacoKinetic (PBPK) modelling:

Tofts-Kety (TK) and Extended Tofts-Kety (ETK)

 Contrast agent concentration is modelled by the result of convolution between an exponential kernel and an Arterial Input Function (AIF)

• Hayton-Brady (HB)

 \circ No physiological meaning of the parameters \rightarrow more flexibility in curve-fitting problem

 Gamma Capillary Transit Times (GCTT) 	QI family	Underlying Model
 Proposed to unify many of the previous proposed models 	HB	Hatyon-Brady
	TK-W	Tofts-Kety + Weinmann AIF
Proposed Quality Indexes (QIs):	TK-P	Tofts-Kety + Parker AIF
• Based on the PBPK models.	ETK-W	Extended Tofts-Kety + Weinmann AIF
 Different population-averaged AIF Weinmann or Parker 	ETK-P	Extended Tofts-Kety + Parker AIF
	GCTT	Gamma Capillary Transit Times + Parker AIF

S. Marrone, G. Piantadosi et al. – "A Novel Model-based Measure for Quality Evaluation of Image Registration Techniques in DCE-MRI" in CBMS2014 G. Piantadosi et al. - "Data-driven selection of motion correction techniques in breast DCE-MRI" in MeMeA2015.

QI Results Evaluation

- To evaluate each similarity measure we perform a specific BLADeS execution for each analysed MCTs
 2D Affine
 3D Affine
 3D Non-Rigid
 Median Filtering
 ElastiX
- According to segmentation results we have drawn an overall ranking for each registration technique (used as gold-standard).
- Another ranking was obtained using each different similarity measure

S. Marrone, G. Piantadosi et al. – "A Novel Model-based Measure for Quality Evaluation of Image Registration Techniques in DCE-MRI" in CBMS2014 G. Piantadosi et al. - "Data-driven selection of motion correction techniques in breast DCE-MRI" in MeMeA2015.

segmentation purposes.

QI Results summary

Nature BL No NEDx3 NEDx3 NEDx3 NEDx3 NEDx3 NEDx3 NEDx3 Ru_AC Ru_AL Ru_AL Ru_BL Ru_BL Ru_BL Ru_BC Elastix	QI R-MSE	Spearman Rank Correlation 6.90%
p1 9° 7° 4° 1° 6° 5° 3° 8° 2°	PSRN	13.56%
p2 2° 5° 6° 1° 4° 4° 8° 7° 3°	N-CC	18.26%
p3 5° 4° 3° 9° 6° 1° 4° 7° 2°	HB	31.31%
p4 2°4°6°7°5°3°7°9° 1°	GCTT	51.15%
p5 4° 5° 2° 1° 4° 6° 8° 8° 3°	TK-W	55.95%
p6 1° 5° 3° 4° 5° 5° 5° 9° 2°	TK-P	59.17%
n30 6° 7° 1° 2° 4° 5° 3° 8° 9°	ETK-W	58.33%
mode 4° 4° 2° 1° 6° 2° 7° 9° 3°	ETK-P	73.91%

S. Marrone, G. Piantadosi et al. – "A Novel Model-based Measure for Quality Evaluation of Image Registration Techniques in DCE-MRI" in CBMS2014 G. Piantadosi et al. - "Data-driven selection of motion correction techniques in breast DCE-MRI" in MeMeA2015.

Therapy Assessment (1/3)

23/02/2017 • 26

frontal

Therapy Assessment (2/3)

The **therapy assessment stage** aims to predict the patient primary tumour recurrence

- Different features for each lesion:
 - Dynamical Features: the median value of the single feature is considered as representative value for that features in each ROI under examination.
 - #9 Dynamic Features + New proposed features:
 - Area Under Local Threshold (AULT),
 - Area Under Global Threshold (AUGT).

- **Pharmacokinetic Features:** extracted from the previous depicted Tofts-Kermode (TK) model, a simple compartmental approach.
- Morphological Features: Very simple geometrical features have been used (volumes and diameters). The values before and after the neoadjuvant treatment are considered as features.
- Clinicopathologic features: Directly extracted from the patient records. Represent the clinical status and the pathological condition:
 - Age, Race (categorical), Pathological Complete Response (pCR).

Therapy Assessment (3/3)

Classification Schema

• Results:

Stage	Accuracy	Sensitivity	Specificity	AUC
Dynamic & Pharmacokinetic	76.6 %	59.7 %	83.7 %	75.8 %
Clinical & Geometrical	75.2 %	28.4 %	95.0 %	73.3 %
Combined (wMV)	77.9 %	61.2 %	84.9 %	79.1 %

Remote analysis (1/2)

• Framework for remote processing of huge amount of data

- Able to interact with <u>different software</u> (acquisition and examination software for the medical case study) and instrumentation (different vendors equipment)
- Context scalability and versatility (to meet potential growing of requests)
- Operational time (a strict constraint such as clinical environment time)
- Data <u>sensitivity</u> (privacy must be guaranteed)

G. Piantadosi et al. – "A secure OsiriX plug-in for detecting suspicious lesions in breast DCE-MRI" - ICA3PP 2013

G. Piantadosi et al. - "A secure, scalable and versatile multi-layer client–server architecture for remote intelligent data processing", Journal of Reliable Intelligent Environments - 2015

Remote analysis (2/2)

Patient Name	Type	Status	Remaining Time	File Size
ID_02B64M	BCA	Sending	05 sec	105 MB
ID_12B32M	BCA	Done	-	106,3 MB
ID_62B12M	BCA	Running on Server	104 sec	125 MB
ID_14825M	BCA	Done	-	108,7 MB
ID_11B11M	BCA	Running on Server	32 sec	118,1 MB

	Executio	on time [s]	Throughput	dn-l
	Mean	Std.dev.	[jobs/s]	Speed
Local*(1 CPU)	229.34	145.19	15.7	-
Rem.**(1 CPU)	192.60	128.05	18.7	1.2
Rem.**(2 CPU)	199.40	130.41	36.1	2.3
Rem.**(4 CPU)	204.31	130.59	70.5	4.5

* Tested on a typical OsiriX workstation Apple iMac with Intel Core 2 Duo 2.0 Ghz (3GB RAM)

** Tested on a Intel Core i7 64bit Quad Core 3Ghz (12GB RAM)

G. Piantadosi et al. – "A secure OsiriX plug-in for detecting suspicious lesions in breast DCE-MRI" - ICA3PP 2013 G. Piantadosi et al. - "A secure, scalable and versatile multi-layer client–server architecture for remote intelligent data processing", Journal of Reliable Intelligent Environments - 2015

Open Issues

Deep Learning approaches

- Demonstrated the ability to outperform the classical machine learning approaches in different fields.
- To the best of our knowledge, very few approaches in DCE-MRI and breast cancer (because of the lack of availability of public data) have been proposed.

Protocol-Independent analysis

- Improves the reliability of the overall system
- Handle different cases
 - Bilateral vs. Unilateral
 - Different field of view
 - Different weighting (T1 non fat-sup, T1 fat-sup, T2)
 - Particular case (such as mastectomy, lumpectomy, implants, etc...)
- Combine DCE-MRI with other diagnostic imaging techniques
 - Diffusion-Weighted Imaging (DWI)
 - Positron Emission Tomography (PET)
 - Computed Tomography (CT)

Motion Correction Techniques

- Improve the quantitative evaluation of the Motion Correction
- Develop a new Motion Correction Techniques (model based)

Thank you for your attention!

Physics of MRI (1/2)

23/02/2017 • 33

Physics of MRI (2/2)

Raymond Damadian (1971)

T1

Proposed Quality Index

- The contrast agent concentration is fitted to the breast Physiologically Based PharmacoKinetic (PBPK) model solving a non-linear curve-fitting problem in the least-squares sense
- The proposed QI is the median value of the Sum of Squared Errors (SSE) along the time dimension, between the measured and fitted contrast agent concentration Ct (n,t), evaluated on a voxel basis. Varying the underlying breast PBPK model, a QI family is obtained

S. Marrone, G. Piantadosi et al. – "A Novel Model-based Measure for Quality Evaluation of Image Registration Techniques in DCE-MRI" in CBMS2014 G. Piantadosi et al. - "Data-driven selection of motion correction techniques in breast DCE-MRI" in MeMeA2015.

Therapy Assessment

Study Normalization

MRI ₁	MRI ₂	MRI ₃	MRI ₄	Baseline	Early-treatment	Inter-regimen	Pre-Surgery
Х	Х	Х	Х	1	2	3	4
Х	Х	Х		1	2		3
Х		Х		1			3
Х	Х		Х	1	2		4
Х			Х	1			4

Feature Extraction

	Feature	Description		Feature	Description			
PE	Peak Enhancement	$PE = (S_1 - S_0) / S_0$	AUG	nAUC Under G	Global Size % w.r.t	the tumor size. Thresh	old: Moda calculate	d
PIE	Post Initial Enhancement	$PIE = (S_2 - S_1) / S_1$		Moda	over all the	patients		
SER	Signal Enhancement Ratio	SER = $(S_1 - S_0) / (S_2 - S_0)$	AULN	nAUC Under Lo	ocal Size % w.r.t	the tumor size. Thresh	old: Moda calculate	d
	Area Under Curvo	Area under TIC Curve (fig1 in grou)		Moda	over all the	single patient		
	Area Onder Curve	Normalized AUC (in terms of area) air	AUG	nAUC Under G	Slobal Size % w.r.t	the tumor size. Thresh	old: Otsu	
IIAUC	Normalized AUC	considering the amount of contract as	to only	Threshold				
		absorbed from the specific tissue	AULT	nAUC Under Lo	ocal Size % w.r.t	the tumor size. Thresh	old: Moda calculate	d
ст	Curve Type	According to Degani classification		Threshold	over all the	single		
wis	Wash-In Slone	According to Degan classification	СТ%	Volume fraction	n per Size % w.r.t	the tumor size for all th	he Curve Type: CT_	1,
WOS	Wash-Out Slope			each Curve Typ	pe of CI_2, CI_3	, CI_4, CI_5, CI_6, C	CI_7, CI_8, CI_9.	
wes	Wash Outslope	RE	%]	Degani	20 -		- 160	
ignal tensity	Wash-in rate Peak er Wash- Baseline	thancement 100 signal intensity	fast E>100% normal % RE \leq 100% RE \leq 50% t ₂ '	9 t 10% Plateau Curve 7 Washout Curve 5 4 3TP 3 classes 1 t ₃ time				
	PhD Candidate:	Gabriele Piantadosi – Imfor	mation Techr	nology and Elect	trical Engineering	PhD 23/0	02/2017 ● 36	

PhD Candidate: Gabriele Piantadosi – Information Technology and Electrical Engineering PhD

23/02/2017 • 37

Motion Artefacts

- Dynamic characteristics of breast examinations make hard to detect suspicious ROI due to motion
 - artefacts
 - Involuntary movements (i.e. breathing)
 - Stress restlessness
 - Claustrophobia
- The problem can occurs in all soft tissues (like breast) and in Dynamic organs (i.e. bowel or heart) examinations

 The motion correction stage aim to remove (or at least reduce) the effects of motion artefacts by means of a Motion Correction Technique (MCT)

S. Marrone, G. Piantadosi et al. . "Automatic Lesion Detection in Breast DCE-MRI" In ICIAP 2013

A Model Based Approach

 A model-based Quality Index (QI) for a quantitative evaluation of MCTs in

breast DCE-MRI

- The contrast agent course is taken into account using compartmental models to describe the pharmacokinetics of the contrast agents in breast tumours
- The proposed QI can be used for MCTs ranking and then choosing the most suitable one for the specific patient, in a fast, repeatable and reliable manner
 Intracellular Space
- Physiologically Based PharmacoKinetic (PBPK) modelling
 - PBPK modelling is a technique for estimating (and predicting) the absorption, distribution, metabolism and excretion (ADME) of substances (including contrast agents)
 - Compartmental methods models consider an organism as a number of related uniform compartments (organs or tissues) and interconnection (blood or lymph flows).

Results summary (MCT-QI)

- Each voxel requires a model curve fitting → high computation effort
- We propose to evaluate the model based QI only on a subset of the whole volume

Breast Mask Extraction (4/4)

Methodology	Acc.	Sen.	Spe.	Dice	Coverage	
				Coeff.	Min.	Avg.
FCM + Anatomical Priors	97.9 %	95.8 %	98.4 %	92.7 %	100 %	100 %
Geometrical-based ^[1]	89.5 %	96.3 %	88.7 %	71.0 %	98.7 %	99.9 %
Atlas-based ^[2]	87.3 %	87.5 %	88.0 %	65.4 %	21.7 %	85.4 %
Geometrical-based ^[3]	86.4 %	86.5 %	86.8 %	64.2 %	20.4 %	88.5 %
Pixel-based ^[4]	82.2 %	99.9 %	79.2 %	60.0 %	100 %	100 %

[1] S.Wu et al., "Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images", Medical Physics, 40(4):42301, 2013

- [2] A. Fooladivanda et al., "Atlas-based automatic breast MRI segmentation using pectoral muscle and chest region model", ICBME, 258, 2014
- [3] W. Lu et al., "DCE-MRI segmentation and motion correction based on active contour model and forward mapping", SNPD, 208, 2006
- [4] A.Vignati et al., "Performance of a fully automatic lesion detection system for breast DCE-MRI", J. Magnetic Resonance Imaging, 34(6):1341,2011

S. Marrone, G. Piantadosi et al. . Breast segmentation using Fuzzy C-Means and anatomical priors in DCE-MRI" In ICPR2016

PhD Candidate: Gabriele Piantadosi – Information Technology and Electrical Engineering PhD

23/02/2017 • 41