

Fabio Palumbo Tutor: Antonio Pescapè XXXIII Cycle - I year presentation

Cloud Infrastructures for Telepathology

Background

- **Graduation:** M. Sc. degree cum laude in Computer Engineering in July 2017
- Currently working in the **COMICS** research group under the supervision of Prof. Antonio Pescapè
- Fellowship type: "PON Dottorati Innovativi"
- Collaborations:

Saint Louis University (USA)

System Management S.p.A. (Italy)

Ningbo University (China)

Cloud computing for healthcare

- Cloud computing adoption allows to
 - + reduce costs
 - + dynamically adapt to user demands
 - + provide innovative telemedicine services
- but implies limited visibility into network performance
 - unknown bandwidth and packet loss
 - increased latency

Cloud infrastructures for telepathology

Telepathology requires digitizing tissue images

- Real-time *control* and *retrieval* of information streams
- Imposes *load* on the core network
 Core Cloud cannot satisfy *latency* requirements by itself

control stream

retrieval stream

New, *complementary* paradigms to bring resources closer to end-users

- deploying resources in the access network (*Fog computing*),
- or even leveraging users' terminals (*Dew computing*)

Fabio Palumbo

1st-year research activities

- *Design* and *evaluation* of network-level monitoring methodology for telepathology in mobile scenarios
 - Available bandwidth estimation in *mobile broadband networks (MBB)* via *active* [C1] and *passive* (SDN-based) [C2] techniques in *real* scenarios
- Analysis and prediction of network performance of public cloud providers
 - User-perceived latency towards *commercial cloud providers* from distributed nodes [C3]

Active bandwidth estimation in MBB [C1]

- EU testbed for MBB (3G/4G) network
- Active bandwidth evaluation: D-ITG and Yaz
- 4 countries and 4 Mobile Network Operators tested
- 30+ days experimental campaign
- → Bandwidth depends on country/operator, time of the day

SDN-based bandwidth estimation in MBB [C2]

- Evaluation of SDN-based passive bandwidth estimation technique in MBB
- Local and remote controller
- Different polling periods and cross-traffic rates
- Mean error is low even in the most demanding cases

8=

Cloud-to-user latency monitoring [C3]

- Worldwide testbed for network measurements
- Cloud-to-user latency evaluation
- 2 providers in 4 regions

webservices™ Microsoft Azure

- 25 source nodes across the world
- → Cloud-to-user latency depends on the destination region tested, may vary over time

Products

Publications:

- G. Aceto, <u>F. Palumbo</u>, V. Persico and A. Pescapé, "Available Bandwidth vs. Achievable Throughput Measurements in 4G Mobile Networks", 2018 14th International Conference on Network and Service Management (CNSM), Rome, 2018.
- G. Aceto, <u>F. Palumbo</u>, V. Persico, A. Pescapé and H. Chen, "*Evaluation of SDN-based bandwidth estimation in Mobile Broad Band networks*", 2018
 24th Asia-Pacific Conference on Communications (APCC), Ningbo, 2018.
- C3. (*in preparation*) "*Measuring latency in public cloud networks*" (tentative title)
- J1. (*in preparation*) "*REMBRANDT: REproducible MoBile tRaffic Analysis aND moniToring*" (tentative title)

Next years

• Credit summary and next years' estimates

	Credits year 1							Credits year 2								Credits year 3								5		
		1	2	3	4	5	6			1	2	3	4	5	9		6	1	2	3	4	5	6			
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	T otal	Check
Modules	20	0	3	12	0	0	7,2	22	10	1						0	2						2	0	22	30-70
Seminars	5	0,3	1,1	0,4	3,2	0	0,4	5,4	5							0								0	5,4	10-30
Research	35	9,7	5,9	0	6,8	10	2,4	35	45				2	2	2 63	0	2 00 13 60	20 00 2 - 10	8	8		18	2	0	35	80-140
	60	10	10	12	10	10	10	62	60			di Ci				0	0	0	0	0	0	0	0	0	62	180

- Future steps:
 - Latency prediction
 - Development of a system prototype