
Innocenzo Mungiello
Tutor: Alessandro Cilardo
XXXI Cycle - II year presentation

Improving Multibank Memory Access
Parallelism on SIMT Architectures

60%

10%

Register
L1 Cache/
Scratchpad

L2 Cache
DRAM

Low latency

Programmable

• Convolution
• Transpose
• LU decomposition
• ...and more

The Unbroken Memory Wall:
• Memory wall remains a fundamental limit for high-performance computing systems.
• Also in terms of performance per watt

• Only the 15% of energy consumption is used for useful computation
• The gap between compute and memory performance is called Memory Wall

• Scratchpad memories can improve memory subsystems performance
• They are on-chip multi-banked, programmable and low latency memories

• A suitable placement strategy is essential for ensuring the maximum memory bandwidth
to applications, as made available by the underlying multi-banked memory, minimizing
or avoiding bank conflicts, which cause potentially parallel accesses to be serialized in time.

Future Work:
• Automate the entire process, from the discovery of the mapping scheme to the source code transformation;
• Analyse the impact of memory performance in new fields like Artificial Intelligence and Approximate Computing.

Core

Core

Core

Core

Methodology: the proposed methodology
relies on an Integer Linear Programming (ILP)
model to describe the problem in terms of
linear equalities ensuring optimal bank
mapping strategies.

Results: For our experiments we chose an NVIDIA Jetson TK1 GPU board as the test
architecture. Using our ILP we found these four feasible solutions:

𝑆𝑆𝑛𝑛1 =

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

𝑆𝑆𝑛𝑛2 =

1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1

𝑆𝑆𝑛𝑛3 =

1 2 4 3
2 3 1 4
3 4 2 1
4 1 3 2

𝑆𝑆𝑛𝑛4 =

1 4 2 3
2 1 3 4
3 2 4 1
4 3 1 2

We call 𝑆𝑆𝑛𝑛1 Adaptive Modular Mapping (AMM), 𝑆𝑆𝑛𝑛2 Inverse Adaptive Modular Mapping
(IAMM), 𝑆𝑆𝑛𝑛3 Triangular Based Mapping (TBM) and 𝑆𝑆𝑛𝑛4 Inverse Triangular Based Mapping
(ITBM).

0 ms

70 ms

140 ms

210 ms

280 ms

350 ms

420 ms

490 ms

560 ms

630 ms

700 ms
TBMAMMPaddingNaive

Convolution Col 0,0 s

0,5 s

1,0 s

1,5 s

2,0 s

2,5 s

3,0 s

3,5 s

4,0 s

4,5 s

5,0 s
TBMAMMPaddingNaive

Convolution Row
0 ms

40 ms

80 ms

120 ms

160 ms

200 ms

240 ms

280 ms

320 ms

360 ms

400 ms
TBMAMMPaddingNaive

DCT0,0 ms

4,2 ms

8,4 ms

12,6 ms

16,8 ms

21,0 ms

25,2 ms

29,4 ms

33,6 ms

37,8 ms

42,0 ms
TBMAMMPaddingNaive

Lud Diagonal
0 ms

8 ms

16 ms

24 ms

32 ms

40 ms

48 ms

56 ms

64 ms

72 ms

80 ms
TBMAMMPaddingNaive

Lud Perimeter 0,0 ms

11,5 ms

23,0 ms

34,5 ms

46,0 ms

57,5 ms

69,0 ms

80,5 ms

92,0 ms

103,5 ms

TBMAMMPaddingNaive

Transpose

We propose a methodology for exploring conflict-free memory mapping schemes, focusing on a
recurrent access pattern in many performance-critical applications, which we called Transpose-
Like. In this pattern, store operations are performed row wise while load operations are
performed column-wise, or vice versa. Because of the finite number of banks in the local
memory, different store/load operations can incur conflicts. Existing programming practices for
reducing or avoiding conflicts, like padding, involve limited modifications to the code but incurs
some memory overhead.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑡𝑡=1

𝑁𝑁𝑇𝑇𝑇𝑇

�
𝑏𝑏=1

𝑁𝑁𝐵𝐵𝐵𝐵

�
𝑖𝑖=1

𝑁𝑁𝐼𝐼𝑇𝑇

𝑥𝑥𝑡𝑡,𝑏𝑏,𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡:

�
𝑖𝑖=1

𝑁𝑁𝐼𝐼𝑇𝑇

𝑥𝑥𝑡𝑡,𝑏𝑏,𝑖𝑖=1 ∀ 𝑠𝑠 ∈ 1,𝑁𝑁𝑇𝑇𝑇𝑇 ,∀ 𝑠𝑠 ∈ 1,𝑁𝑁𝐵𝐵𝐵𝐵

�
𝑏𝑏=1

𝑁𝑁𝐵𝐵𝐵𝐵

𝑥𝑥𝑡𝑡,𝑏𝑏,𝑖𝑖=1 ∀ 𝑠𝑠 ∈ 1,𝑁𝑁𝑇𝑇𝑇𝑇 ,∀ 𝑚𝑚 ∈ 1,𝑁𝑁𝐼𝐼𝑇𝑇

�
𝑡𝑡=1

𝑁𝑁𝑇𝑇𝑇𝑇

𝑥𝑥𝑡𝑡,𝑏𝑏,𝑖𝑖=1 ∀ 𝑠𝑠 ∈ 1,𝑁𝑁𝐵𝐵𝐵𝐵 ,∀ 𝑚𝑚 ∈ 1,𝑁𝑁𝐼𝐼𝑇𝑇

𝑥𝑥𝑡𝑡,1,𝑖𝑖 = 1 ∀ 𝑠𝑠 ∈ 1,𝑁𝑁𝑇𝑇𝑇𝑇 ,∀ 𝑚𝑚 ∈ 1,𝑁𝑁𝐼𝐼𝑇𝑇 ∧ 𝑠𝑠 = 𝑚𝑚
𝑥𝑥𝑡𝑡,𝑏𝑏,𝑖𝑖 𝑚𝑚𝑠𝑠 𝑠𝑠𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏

Where 𝑁𝑁𝐵𝐵𝐵𝐵 is the Number of Scratchpad
banks, 𝑁𝑁𝑇𝑇𝑇𝑇is the number of threads that
perform memory accesses and 𝑁𝑁𝐼𝐼𝑇𝑇 is the
number of iteration performed by threads in
order to load and store all data.

All feasible solutions of our ILP model
guarantee that there aren’t conflicts and
memory overhead. We can represent a
feasible solution using a mapping matrix 𝑆𝑆𝑛𝑛:

𝑆𝑆𝑛𝑛 =

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

where rows represent the threads, columns
represent the iterations, and each cell
contains the bank index accessed by the
corresponding thread/iteration.
Interpreting cells value as bank indices and
the columns as the iterations of the loop
facilitates the construction of a memory
access function. In fact, we must simply
subtract each column in 𝑆𝑆𝑛𝑛 from the
following one modulo k, meaning that if we
obtain a negative value we need to add k.

Padding, AMM, and TBM solve all bank conflicts, but Padding waste memory and this
lead to decreased performance as shown in DCT. The TBM technique must perform
more arithmetic operations in order to compute memory access indices and in
Convolution Col and Lud Perimeter kernels has a higher execution time than Padding.
The Convolution Row kernel is the only one with non-coalesced global memory
accesses. In this case, a higher utilization of the compute units by the TBM technique
leads to a better execution time.

	Innocenzo Mungiello�Tutor: Alessandro Cilardo�XXXI Cycle - II year presentation

