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Motivations: 
Mobile Traffic Growth

Wi-Fi and mobile devices will account for 
79% of Internet traffic by 2022

Source: Cisco 2019 VNI Global IP Traffic Forecast, 2017-20
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Mobile Traffic Classification

What is flowing through my (mobile) network?
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Mobile Traffic Classification

What is flowing through my (mobile) network?
Associating  traffic classification objects 
with the mobile apps that generate them

Source: Sandvine, The Mobile Internet Phenomena Report, 2019
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Mobile Traffic Classification: 
Main Drivers
• Classification of mobile traffic 

provides valuable information for
• Advertisers
• Insurance companies
• Security agencies
• Infrastructure Operators
• …

• But also raises privacy issues
• Indiscriminate surveillance
• Context-sensitive apps
• Bring your own device policy
• …
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Mobile Traffic Classification:
Main Challenges
• Huge volume of mobile traffic evolving at an

unprecedented pace
• One-click installation
• Quick-paced automatic updates
• Different versions of apps and/or operating systems

running on different devices

• Increasing adoption of encrypted protocols
• hinders methods based on Deep Packet Inspection
• requires approaches based on Machine Learning (ML)
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My Contribution
Proposing novel methodologies for encrypted and 

mobile Traffic Classification (TC) via ML approaches

Deep 
Learning

Big Data

Hierarchical
Classification

Multi-
Classification

2

1

3

4
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Data quality is critical
Data-driven TC methodologies require 

reliably labeled datasets to ensure proper 
design, realization, and validation

Reproducible architecture for generating
mobile-app traffic and automatically creating 

the related high accurate ground-truth
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MIRAGE Architecture

• Provides connectivity to 
mobile devices 

• Collects network traffic and 
system-call log-files

• Can handle multiple devices
at the same time

• Performs the Ground-Truth
building

• Constructs the final 
mobile-app traffic dataset

• Extracts the MIRAGE-2019
public version
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Benchmarking TC
Human-generated mobile and encrypted traffic datasets
are used to assess the set of TC methodologies proposed

2

1

Android

3

iOS

FB/FBM

Mobile-app traffic datasets Anon17 public dataset [1]
[1] K. Shahbar and A. N. Zincir-Heywood, “Packet momentum for identification of anonymity networks”
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Multi-Classification
Outputs from ML classifiers can be combined
to perform Multi-Classification (MC) tasks

Various classifier fusion rules have been proposed in the 
literature [2, 3] based on both hard and soft approaches

The aim is to improve classification performance
on encrypted mobile apps’ traffic

[2] A. Dainotti, A. Pescapé, and C. Sansone, “Early classification of network traffic through multi-classification”
[3] L. I. Kuncheva, “Combining pattern classifiers: methods and algorithms”

1
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Antonio Montieri 15

Careful selection of combination rule
and classifiers subset allows to obtain 

up to +7.3% F-measure increment 

2

Android

1
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Hierarchical Classification

Hierarchical-TC Framework

• ML-based classifiers 
arranged in a tree fashion

• “Divide-et-impera” approach

• Scalability enhancement

• Per-node tuning 
and performance

• “Practical” benefits by design

Hierarchical Classification (HC) represents a perfect 
match for encrypted TC at various granularity levels

2
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Proposed HC Framework

Anonymous
Network [L1]

Traffic 
Type [L2]

Application 
[L3]

HC of Anonymity Tools’ traffic at 
three granularity levels according to Anon17

2
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Fine-Grained Performance 
Improvement

From Flat to Hierarchical Classification

Errors more confined within the 
same Anonymous Network or Traffic Type

2
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Per-node Performance 
Breakdown

Good Bad Random Forest is 
the best classifier 
for each node except 
Bayesian Networks
for TorApp node

Significant degradation
at L3 for I2PApp80BW
• Accuracy    → 48.94%
• F-measure → 48.90%

Per-node performance figures allow 
to accurately evaluate per-node behaviors

2
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Beyond ML-Based TC
Machine Learning (ML) Flow

In Feature 
Extractor Out

ML classifiers
rely on domain-expert 
handcrafted features

• Time-consuming process
• Unsuited to automation
• Rapidly outdated

Difficulty to design accurate 
and up-to-date mobile and 
encrypted traffic classifiers

Features
ML

Classifier

3



Antonio Montieri 21

Beyond ML-Based TC
Machine Learning (ML) Flow Deep Learning (DL) Flow

In DL Classifier
Feature 

Extractor Out In

ML classifiers
rely on domain-expert 
handcrafted features

• Time-consuming process
• Unsuited to automation
• Rapidly outdated

Difficulty to design accurate 
and up-to-date mobile and 
encrypted traffic classifiers

DL classifiers
are trained directly 

from input data

• Automatic hierarchical 
feature extraction

• Reduced preprocessing effort

Stepping stone toward high 
performance in encrypted 

and mobile TC

Features
ML

Classifier Out

3
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DL-Based TC Framework

Deep Learning Workflow for Traffic Classification

Elementary Layers

Classes of Deep Learning Architectures

3
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The MIMETIC Architecture
The proposed framework is employed to design a novel 
multi-modal DL-based mobile traffic classification 

architecture to exploit the different views of a TC object

Pretraining Fine-tuning

3
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MIMETIC outperforms 
ML and DL baselines

• Up to +8.6% F-measure improvement

• Run Time Per Epoch (RTPE) > 3.5× lower

1

FB/FBM

3

iOS

2

Android

3
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Big Data-Enabled TC
Training of DL networks may result in completion times

orders-of-magnitude higher than those acceptable

Big Data (BD) parallelization perfectly suits
the repetition of demanding tasks as in DL-based TC

Cloud services provides practical and convenient tools 
to address these goals

However…

4
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Big Data-Enabled TC
Training of DL networks may result in completion times

orders-of-magnitude higher than those acceptable

Big Data (BD) parallelization perfectly suits
the repetition of demanding tasks as in DL-based TC

Cloud services provides practical and convenient tools 
to address these goals

However…

…DL training is non-naturally-parallelizable preventing 
the transparent application of the BD framework

4
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Big Data-Enabled TC
Investigating and experimentally evaluating 
the adoption of DL networks for classifying

encrypted mobile traffic via the BD framework

Three intertwined 
dimensions 

• Classification 
performance

• Training completion time

• Cloud deployment cost

Cloud-based setup

4
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Training Process on BD
N cooperating workers
coordinated by a single 
central master realizing 
the data parallelism

N = {2, 4, 8, 16}

4
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Training Process on BD
N cooperating workers
coordinated by a single 
central master realizing 
the data parallelism

N = {2, 4, 8, 16}

Communication protocol 
governing the exchange of 
commits & pulls between 
the workers and master

Asynchronous

4
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Training Process on BD
N cooperating workers
coordinated by a single 
central master realizing 
the data parallelism

N = {2, 4, 8, 16}

Communication protocol 
governing the exchange of 
commits & pulls between 
the workers and master

Asynchronous

Update frequency F 
at which the workers 
execute a commit
From one per mini-batch 

to one per worker

4
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Training Process on BD
N cooperating workers
coordinated by a single 
central master realizing 
the data parallelism

N = {2, 4, 8, 16}

Communication protocol 
governing the exchange of 
commits & pulls between 
the workers and master

Asynchronous

Update frequency F 
at which the workers 
execute a commit
From one per mini-batch 

to one per worker

Federated-optimization 
algorithm defined by both 
local workers computation 
and master update policy

AEASGD

4
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How does N impact 
BD-Enabled TC?

1

FB/FBM

3

iOS

4
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How does N impact 
BD-Enabled TC?

1

FB/FBM

3

iOS

Training time vs. N

• Decreasing trend with N 
for both TC tasks

• 1D-CNN (FB/FBM) shows up 
to -91.8% training time w.r.t. 
centralized deployment

4
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How does N impact 
BD-Enabled TC?

Cost vs. N

• Proportional to 
the training time

• 1D-CNN (iOS) 
shows +54.2% 
cost and only 
-2.53% training 
time when 
passing from 
N = 8 to N = 16

1

FB/FBM

3

iOS

4
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How does N impact 
BD-Enabled TC?

F-measure vs. N

• Decreasing F-measure
with N for both TC tasks

• 1D-CNN (FB/FBM) shows 
-53.4% F-measure when 
N = 16 w.r.t. centralized 
deployment

1

FB/FBM

3

iOS

4
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Conclusions
Mobile and encrypted TC plays a role of paramount 

importance in network management

The effectiveness of traditional methods is hampered
in these dynamic and challenging scenarios

Novel methodologies for encrypted and mobile TC 
based on advanced ML and DL approaches 
are proposed, implemented, and evaluated 
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Questions?

Thank you!
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Extra Slides
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Mobile and encrypted TC works
and comparison with the set of 
proposed methodologies

• Traffic
• Mobile Traffic (MT)
• Encrypted Traffic (ET)

• Technique
• Multi-Classification (MC) 
• Hierarchical Classification (HC)
• Deep Learning (DL)
• Multi-modal (MM)
• Big Data (BD)

• Dataset
• Human Dataset (HD)
• Open Dataset (OD)
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MIRAGE-2019 Dataset Building
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MIRAGE-2019 Dataset 
Structure
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Hard Combiners
Label Technique Category Training

MV Majority Voting
Vote (Bayesian)

None (Confusion Matrix)

WMV Weighted Majority Voting Confidence vector

NB Naïve Bayes Bayesian Confusion Matrix

BKS Behavior Knowledge Space Behavior 
Knowledge Space 

(Bayesian)
BKS & Confusion Matrix

WER Wernecke

ORA Oracle Oracle N/A

• Simple combiners → No need for training
• Trainable combiners → Some free/tunable parameters

• 2nd level training or validation phase required
• Random training-validation-test set splitting → 50% - 25% - 25%
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Soft Combiners

Technique Category

Mean

Class Conscious
Non-trainable

Maximum

Minimum

Median

Trimmed Mean

Harmonic Mean

Geometric Mean

Generalized Mean

Probabilistic Product

Technique Category

Fuzzy Integral

Class Conscious
Trainable

K Weights

KL Weights

DT-SE

Class Indifferent
DT-L1

DT-FSD

Dempster-Shafer

Oracle Oracle
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HC Methodology (1/2)

Traffic in Anon17 is split into directional flows

Four sets of classification features can be extracted
74 statistics

• Flow direction & duration 
• Packet Length (PL) statistics
• Inter-Arrival Time (IAT) statistics 
• TCP and IP header-related features
• Number of connections

Histograms of 
PL
PL & IAT

<PL, IAT> of the first K packets
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HC Methodology (2/2)

Offline TC →

Early-based TC →

Five ML-based classification algorithms
Naïve Bayes (NB_SD)

Multinomial Naïve Bayes (MNB)

Bayesian Networks (BN_TAN)

C4.5

Random Forest (RF)

Bayesian 
Approach

Decision
Tree
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Performance Evaluation
• Accuracy
• Per-class measures

F-measure & G-mean (macro)
• Fine-grained performance

Confusion matrix

• Performance measures as μ ± 3σ

(Stratified) 10-fold validation

99.73% under
Gaussian assumption
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Depth of Accurate TC

Anonymous
Network [L1]

Traffic 
Type [L2]

Application 
[L3]
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TC-task Complexity → Performance Drop

Feature set
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MIMETIC General Framework
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MIMETIC Performance 1

FB/FBM
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MIMETIC Performance 3

iOS

2

Android
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MIMETIC Performance
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How does F impact 
BD-Enabled TC?

1D-CNN
N = 4

1/F [#epochs]1/F [#epochs] 1/F [#epochs]
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How does F impact 
BD-Enabled TC?

1D-CNN
N = 4

• Both training time and cost increase with frequency update F

• +53.2% passing from 1/F = 90 to 1/F = 1/20

• +80.3% passing from 1/F = 1/20 to 1/F = 1/139

1/F [#epochs]1/F [#epochs] 1/F [#epochs]
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How does F impact 
BD-Enabled TC?

1D-CNN
N = 4

1/F [#epochs]1/F [#epochs] 1/F [#epochs]

• F-measure varies for different frequency update F intervals

• Best performance for 1/4 ≤ 1/F ≤ 10

• Significant degradation for 1/F ≤ 1/10 and 1/F ≥ 30

• Computational bottleneck at the master for 1/F ≤ 1/10 hindering the 
correct collection of the updates from the workers


