
Traditional Machine Learning (ML) classifiers 
rely on domain-expert driven handcrafted features
• Time-consuming and unsuited to automation
• Outdated compared to the evolution of mobile traffic

Deep Learning (DL) classifiers are directly fed with input data
• Automatic hierarchical feature extraction
• Reduced preprocessing effort

DL could be the stepping stone toward 
the achievement of high performance in mobile TC
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Massive usage of mobile devices has 
changed significantly the network traffic

Traffic Classification (TC) of mobile apps
• provides valuable information for 

advertisement, insurance, safety, etc.
• raises privacy and security issues

5X -
growth in mobile 
data traffic between 
2018 and 2024 [1]

Mobile Traffic Classification

Associating traffic classification objects
to the mobile apps generating them

TC challenges are exacerbated
• Adoption of encrypted protocols
• Huge number of apps to discriminate
• Heterogeneous and dynamic nature 

of mobile traffic

Naïve adoption of DL implies misleading design choices and lead to 
biased conclusions [2] due to the peculiar nature of traffic data

MultImodal DL-based MobilE TraffIc Classification (MIMETIC) 
framework has the capability of effectively exploiting the 

“multimodal” nature of the different views of a TC object [3]

Proposed Training Procedure Datasets
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• 31.0k biflows

Mobile TC Performance vs. Reject Option
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Comparison of MIMETIC framework with
• best single-modality DL classifier [2]
• state-of-the-art ML mobile-traffic classifier [4]

MIMETIC framework outperforms baselines
• Up to +8.58% F-measure improvement
• Run Time Per Epoch (RTPE) > 3.5× lower

Fine-grained Performance
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Collaborations

Next Steps

• Evaluation of the purity of labeled samples used for training 

• Exploitation of massive unsupervised data for improved learning

• Adoption of pre-trained architectures and more sophisticated DL layers

• Design of DL architectures able to cope with more challenging TC objects

• Adoption of Big Data paradigm to cope with increased training complexity
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