

Rocco Moccia Tutor: Prof. Bruno Siciliano – co-Tutor: Prof. Fanny Ficuciello XXXIII Cycle - III year presentation

Vision-based Autonomous Control in Robotic Surgery

Background

- **M. Sc. Degree:** Mechanical Engineering from Sapienza, Università di Roma
- Team: ICAROS and PRISMA Lab
- Collaboration:
 - University of Leeds (UK)
 - Medical Micro Instruments, MMI S.p.A (Italy)
 - INRIA Strasbourg (France)
- Supervisors: Prof. Bruno Siciliano and Prof. Fanny Ficuciello
- Fellowship: PON

Credits

Student: Rocco Moccia rocco.moccia@unina.it Tutor: Bruno Siciliano bruno.siciliano@unina.it Cycle XXXIII

	Credits year 1							Credits year 2							Credits year 3												
		~	N	3	4	49	ω			~	8	3	4	ц	o			~	0	3	4	ю	ø				
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	extra-period	Summary	Total	Check
Modules	20			3	4		13	20	11	1,2		4,2				5,4	6	0	0	0	0	0	0	0	0	25,4	30-70
Seminars	5	3,2	0,4	1			0,2	4,8	24	0,2	4,2	7,8	3	0,2	9	24	1	0,2	0	0,4	0	0	0	0	0,6	30	10-30
Research	35	5	6	6	6	6	6	35	45	6	8	8	8	8	8	46	60	8	8	8	9	9	9	9	60	141	80-140
	60	8,2	6,4	10	10	6	19	60	80	7,4	12	20	11	8,2	17	76	67	8,2	8	8,4	9	9	9	9	61	196,4	180

Credits

Year	Lecture/Activity	Туре	Credits	Certification	Notes
	MODULES				
1	Green Economy and Management in Engineering projects	External Module	3	х	
1	Summer School on Control of Surgical Robots (COSUR 2018)	Doctoral School	4	x	
1	Image Processing For Computer Vision	MS Module	9	x	
1	Geometric Theory of Soft Robots	External Module	4	x	
2	Data Science and Optimization	Ad Hoc Module	1,2	х	
2	Machine Learning	Ad Hoc Module	4,2	x	
	SEMINARS				
1	EIT-Health Matchmaking Event 2018	Conference	3,2	x	
1	The Age of Human-Robot Collaboration	Seminar	0,4	x	
1	IBMQ: Building the First Universal Quantum Computers for Business and Science	Seminar	0,8	x	
1	How Does Mathworks Accelerate the Pace of Engineering and Science?	Seminar	0,2	x	
1	Domains of Attraction and Manifolds in Gear Model	Seminar	0,2	x	
2	Issues in Robotic Manipulation of Deformable Objects	Seminar	0,2	x	
2	Research work in active perception and robot interactive lab in IIT	Seminar	0,2	х	
2	Robots in Medical applications: an overview of the current Medical Robotics market from the industry's point of view	Seminar	0,4	х	
2	9 th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery	Conference	3,6	x	
2	Presentazione ADI: vittorie, sfide, obiettivi	Seminar	0,2	x	
2	Control of Multi-Robot systems: from rendez-vous to long-duration autonomy	Seminar	0,2	x	
2	The Hamlyn Symposium on Medical Robotics 2019	Conference	7,2	x	
2	PID Passivity-based Control: Application to Energy and Mechanical Systems	Seminar	0,2	x	
2	SIDRA 2019 PhD Summer School	Doctoral School	3	x	
2	Innovation in Medical Robotics and the human-centred paradigm	Seminar	0,2	x	
2	2019 IEEE/RSJ International Conference on Intelligent Robots and Systems	Conference	9	x	
3	Numerical methods for modeling, simulation and control for soft robots or robots in interaction with deformable environment	Seminar	0,2	x	
3	Exploring autonomy in robotic colonoscopy	Seminar	0,4	X	

Company and Abroad Periods

 STORM Lab – University of Leeds: School of Electronic and Electrical Engineering, Leeds, LS2
 9JT (UK)

Jun. 2020 – Mar. 2021 (from home)

- Medical Micro Instruments, S.p.A: via del Paduletto 10A, 56011, Calci (PI), Italy Nov. 2019 – Mar. 2020 (on site) Mar. 2020 – May 2020 (from home)
- MIMESIS Team INRIA Strasbourg: 1, place de l'Hôpital 67000, Strasbourg (France) Jul. 2018

Robotic Surgery Background

Robots completely changed surgical procedures, introducing:

- Enhanced dexterity
- Motion scaling
- Tremor filtering

Minimally invasive Surgery and **Microsurgery** are the most suitable surgical fields in which robots can produce a significant contribute

Robotic Surgery Background

da Vinci[®] Surgical System:

 Widely used robotic system for robot-assisted laparoscopic procedures

Symani[®] Surgical System:

 Most advanced surgical robot for complex microsurgical procedures

Robotic Surgery Background

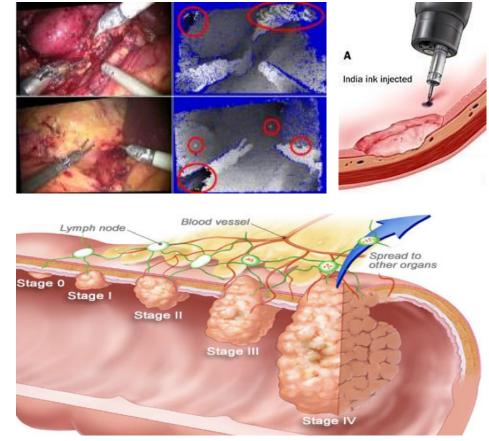
Levels of Autonomy for Surgical Robots:

Goal, motivation and approach

The **goal** of this thesis is to create reliable solutions to enhance the quality of intervention in surgical robotic procedures

The main **motivation** is to overcome robot's limits in critical tasks whose success still relies on surgeon's abilities

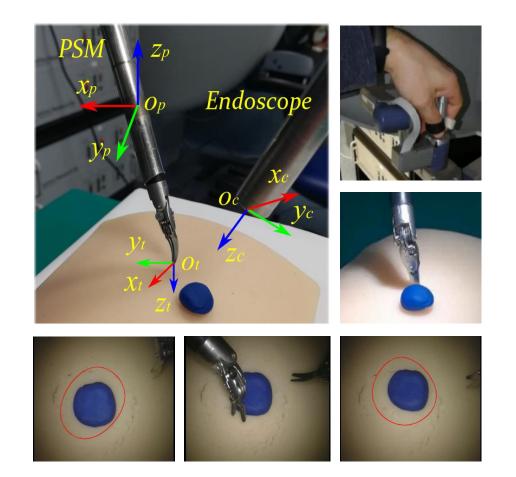
Two **approaches** are used simultaneously:


- 1. introduce **advanced control** methods, using **shared control** paradigms and laying the foundations for full **autonomous** surgical procedures
- propose computer vision algorithms, adopting traditional and ML approaches, that represent a valid support for novel control methods in surgical robotics

Problem: Colorectal polyp dissection requires very accurate detection of region of interest and precise cutting

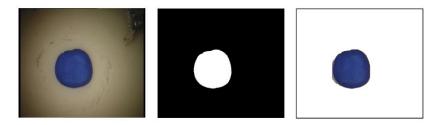
Solution: vision-based method to assist the surgeon by means of a shared control approach (Virtual Fixtures)

Results: high-quality dissection



R. Moccia et al. "Vision-based Virtual Fixtures Generation for Robotic-Assisted Polyp Dissection Procedures", IEEE/RSJ IROS 2019

Method:


- The optimal dissection path using visual computation of control points
- Virtual Fixtures ensure realization of the planned path
- Haptic guidance implementation through impedance control

R. Moccia et al. "Vision-based Virtual Fixtures Generation for Robotic-Assisted Polyp Dissection Procedures", IEEE/RSJ IROS 2019

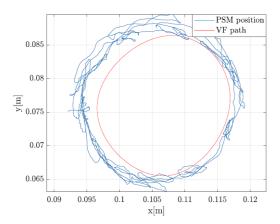
Segmentation: Watershed transformation and Grabcut method

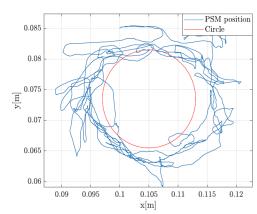
Cutting Path: formulated through a B-Spline curve

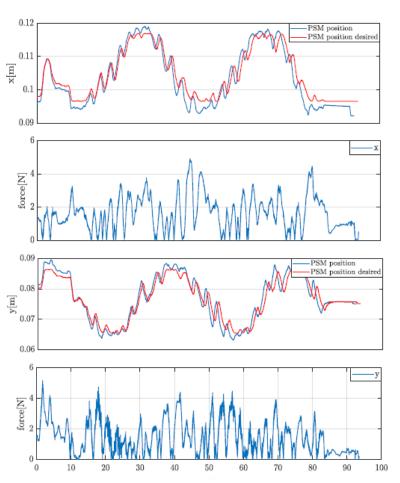
$$\Gamma(s) = \sum_{i=0}^{n} N_{i,k}(s) p_i$$

Attractive Force: imposed on VF path

$$f_{VF} = K_p(x_d - x) - K_d \dot{x}$$


$$M\ddot{\tilde{x}} + D\dot{\tilde{x}} = f_h + f_{VF}(\cdot)$$




R. Moccia et al. "Vision-based Virtual Fixtures Generation for Robotic-Assisted Polyp Dissection Procedures", IEEE/RSJ IROS 2019

Results:

- Optimal path autonomously adapted to environmental changes
- Improved accuracy and precision of intervention

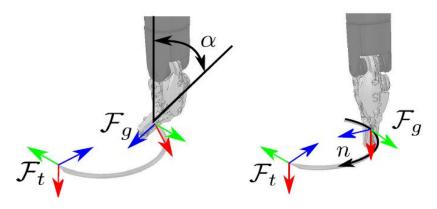
R. Moccia et al. "Vision-based Virtual Fixtures Generation for Robotic-Assisted Polyp Dissection Procedures", IEEE/RSJ IROS 2019

Suturing Needle Tracking

Problem: Suturing represents a very difficult procedure in Robotic Surgery

Solution: tracking of suturing needle to define the grasping pose optimizing the cost of robot joint limits and singularities

Results: continuous suturing avoiding tedious interruptions

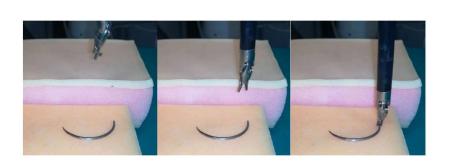


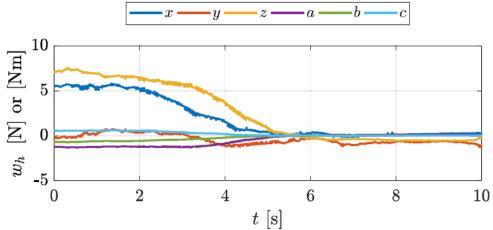
R. Moccia et al. "Haptic-guided shared control for needle grasping optimization in minimally invasive robotic surgery", Hamlyn Symposium Workshop 2019


Suturing Needle Tracking

Method:

- Vision-based detection and tracking of suturing needle
- Grasping optimization avoids joint limits and singularities along the suturing path
- Haptic guidance suggests the optimal grasp to the surgeon


R. Moccia et al. "Haptic-guided shared control for needle grasping optimization in minimally invasive robotic surgery", Hamlyn Symposium Workshop 2019


Suturing Needle Tracking

Cost Function:

Results:

• post-grasp movements during the suturing task are free from constraints

R. Moccia et al. "Haptic-guided shared control for needle grasping optimization in minimally invasive robotic surgery", Hamlyn Symposium Workshop 2019

Problem: In robotic surgery surgical tools could collide, creating serious damage to the robot or human tissues

Solution: Tool collision avoided by rendering a repulsive force to surgeon

Results: human-subject study

R. Moccia et al. "Vision-based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery", IEEE Robotics and Automation Letters 2020

Method:

- Marker-less surgical tool tracking using EKF coupling vision and kinematics information
- Shared control (VF) and haptic guidance method

$$oldsymbol{f}_{vf}(ilde{oldsymbol{x}},\dot{ ilde{oldsymbol{x}}}) = -oldsymbol{K}_{vf} ilde{oldsymbol{x}} - oldsymbol{D}_{vf}\dot{ ilde{oldsymbol{x}}}$$

R. Moccia et al. "Vision-based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery", IEEE Robotics and Automation Letters 2020

Tool segmentation:

- Deep learning solution for instrument segmentation, using fully convolutional neural network
- 3D position of PSM tip is reconstructed by using triangulation with direct linear transformation, while orientation is computed solving *PnP* problem

R. Moccia et al. "Vision-based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery", IEEE Robotics and Automation Letters 2020

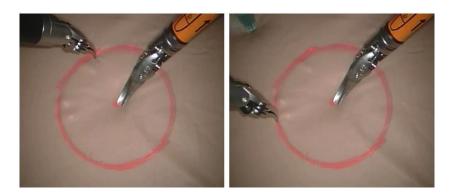
Tool tracking:

• Process dynamics:

$$\left\{ egin{split} \dot{oldsymbol{p}}_t = oldsymbol{v}_g + oldsymbol{S} \left(oldsymbol{\omega}_g
ight) oldsymbol{r}_{gt} + oldsymbol{n}_p \ \dot{oldsymbol{q}}_t = rac{1}{2} oldsymbol{\Omega} \left(oldsymbol{\omega}_g
ight) oldsymbol{q}_t + oldsymbol{n}_q \end{split}$$

• Measurement model:

$$oldsymbol{y} = oldsymbol{\zeta} + oldsymbol{m} \quad oldsymbol{F} = egin{bmatrix} oldsymbol{S}\left(oldsymbol{\omega}_g
ight) & oldsymbol{O}_3 \ oldsymbol{O}_3 & oldsymbol{S}\left(oldsymbol{\omega}_g
ight) \end{bmatrix} \quad oldsymbol{H} = egin{bmatrix} oldsymbol{I}_3 & oldsymbol{O}_3 \ oldsymbol{O}_3 & oldsymbol{I}_3 \end{bmatrix} \quad oldsymbol{H} = egin{bmatrix} oldsymbol{I}_3 & oldsymbol{O}_3 \ oldsymbol{O}_3 & oldsymbol{I}_3 \end{bmatrix}$$


• The output of the EKF provides current pose of tool end-effector with respect to robot base frame

R. Moccia et al. "Vision-based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery", IEEE Robotics and Automation Letters 2020

Experimental validation:

• User-study involving novice and expert surgeons

Expert

1

 $\mathbf{2}$

3

4

5

6

test

0

0

0

0

0

 $\mathbf{0}$

р

0.1352

0.0856

0.8286

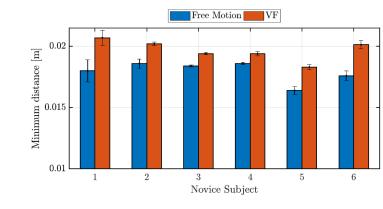
0.8757

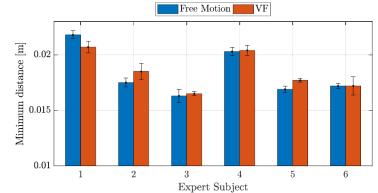
0.1140

1

 F_M [N]

2.4416


3.0749


3.3411

2.8188

3.9998

3.4170

test

1

1

1

1

1

1

р

0.0044

0.0127

0.0030

0.0219

0.0206

0.0012

Novice

 $\mathbf{2}$

3

4

5

6

R. Moccia et al. "Vision-based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery", IEEE Robotics and Automation Letters 2020

Rocco Moccia

 F_M [N]

3.4527

2.8175

3.5239

2.6180

3.0035

2.8800

Collaboration with

Problem: Robot-aided surgical procedures involve a sequence of complex tasks

Solution: Executing tasks simultaneously gives the robot the ability to accomplish numerous assignments in safety conditions

Results: Multiple task execution framework

R. Moccia et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission*

Method:

- Optimization-based approach allows the accomplishment of multiple surgical tasks simultaneously
- Task definition and execution is achieved by means of Control Barrier Functions (CBFs)
- Dual Quaternion (DQ) algebra ensures a more efficient geometrical representation of surgical site

R. Moccia et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission*

Robot Kinematics in DQ:

• Dual quaternion:

 $\mathcal{Q} \triangleq \{ b + \varepsilon b' : b, b' \in \mathbb{Q}, \varepsilon^2 = 0, \varepsilon \neq 0 \} \quad \mathbb{Q} \triangleq \{ \eta + \hat{i}\epsilon_x + \hat{j}\epsilon_y + \hat{k}\epsilon_z : \eta, \epsilon_x, \epsilon_y, \epsilon_z \in \mathbb{R} \}$

• Rigid body pose in DQ:

 $\underline{\boldsymbol{x}} = \boldsymbol{r} + \varepsilon \frac{1}{2} \boldsymbol{p} \boldsymbol{r} \qquad \underline{\mathcal{S}} \triangleq \{ \underline{\boldsymbol{x}} \in \mathbb{Q} : ||\underline{\boldsymbol{x}}|| = 1 \} \text{ with } \underline{\boldsymbol{x}} \in \mathcal{Q}, \, \boldsymbol{p} \in \mathbb{Q}_p \text{ and } \boldsymbol{r} \in \mathbb{S}^3$

• Forward and differential kinematics:

$$\underline{\boldsymbol{x}}_{ee}^{base}\left(\boldsymbol{q}\right) = \underline{\boldsymbol{x}}_{0}^{base} \underline{\boldsymbol{x}}_{1}^{0}\left(\boldsymbol{q}_{0}\right) \underline{\boldsymbol{x}}_{2}^{1}\left(\boldsymbol{q}_{1}\right) \dots \underline{\boldsymbol{x}}_{n}^{n-1}\left(\boldsymbol{q}_{n-1}\right) \underline{\boldsymbol{x}}_{ee}^{n}$$

$$\operatorname{vec}_{8}\underline{\dot{x}}(q) = J_{\underline{x}}(q)\dot{q}$$

R. Moccia et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission*

Task definition:

$$\mathcal{C} = \{ \boldsymbol{\sigma} \in \mathcal{T} : \boldsymbol{h}(\boldsymbol{\sigma}, \boldsymbol{t}) \ge 0 \}$$

 $\boldsymbol{h}(\boldsymbol{\sigma_d}, \boldsymbol{t}) = -\frac{1}{2} ||\boldsymbol{e_\sigma}||^2, \text{ where } \boldsymbol{e_\sigma} = \boldsymbol{\sigma} - \boldsymbol{\sigma_d}(\boldsymbol{t})$

Task execution:

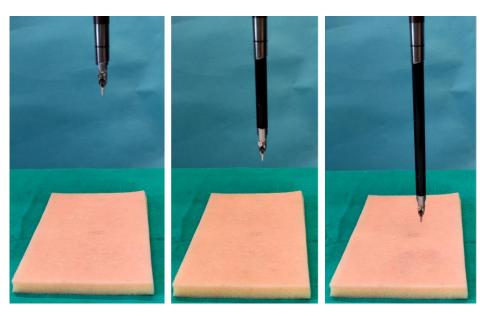
$$\sup_{\dot{\boldsymbol{q}}\in\mathcal{U}} \left\{ \boldsymbol{e}_{\boldsymbol{\sigma}}^T \dot{\boldsymbol{\sigma}}_d + \boldsymbol{e}_{\boldsymbol{\sigma}}^T \boldsymbol{J}_{\boldsymbol{\sigma}} \dot{\boldsymbol{q}} \right\} \geq -\gamma(\boldsymbol{h}(\boldsymbol{\sigma}_{\boldsymbol{d}}))$$

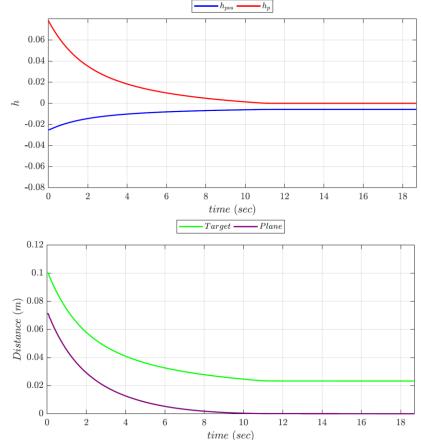
$$\begin{array}{ll} \underset{\dot{q}}{\operatorname{minimize}} & \|\dot{q}\|^2 & \underset{\dot{q}}{\operatorname{minimize}} & \|\dot{q}\|^2 + l\|\delta\| \\ \text{subject to} & \boldsymbol{e}_{\boldsymbol{\sigma}}^T(\boldsymbol{t}) \; \boldsymbol{J}_{\boldsymbol{\sigma}}(\boldsymbol{q}) \dot{\boldsymbol{q}} \geq & \text{subject to} & \boldsymbol{A}(\boldsymbol{h}(\boldsymbol{\sigma}, \boldsymbol{t})) \dot{\boldsymbol{q}} \geq \boldsymbol{b}(\boldsymbol{h}(\boldsymbol{\sigma}, \boldsymbol{t})) \\ & -\gamma(\boldsymbol{h}(\boldsymbol{\sigma}_{\boldsymbol{d}}, \boldsymbol{t})) - \boldsymbol{e}_{\boldsymbol{\sigma}}^T(\boldsymbol{t}) \dot{\boldsymbol{\sigma}_{\boldsymbol{d}}}(\boldsymbol{t}) & \boldsymbol{K}(\boldsymbol{t}) \boldsymbol{\delta} \geq 0 \end{array}$$

R. Moccia et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission*

Experimental Evaluation in simulation on Symani[®] Surgical System:

Position and Orientation test

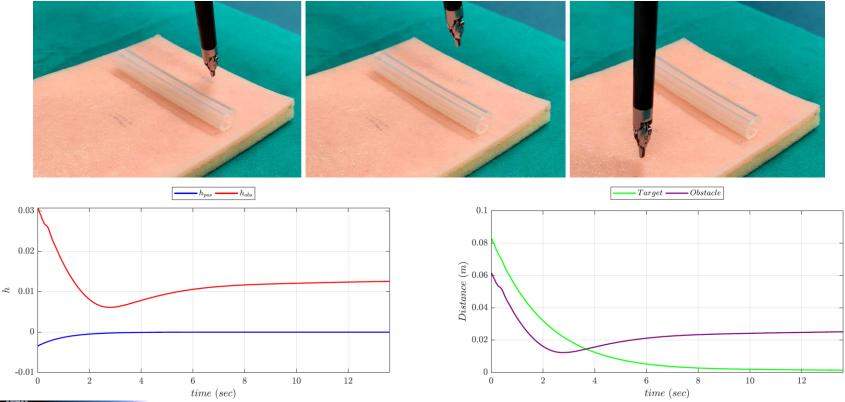



h

R. Moccia et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission*

Experimental Evaluation on dVRK Robot:

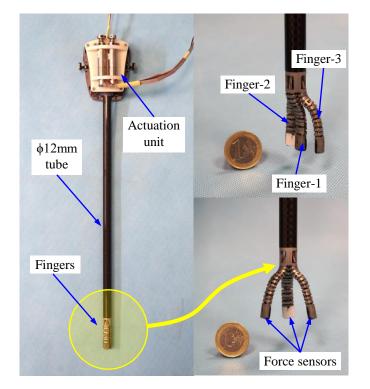
• Forbidden region avoidance test



R. Moccia et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission*

Experimental Evaluation on dVRK Robot:

Obstacle avoidance test



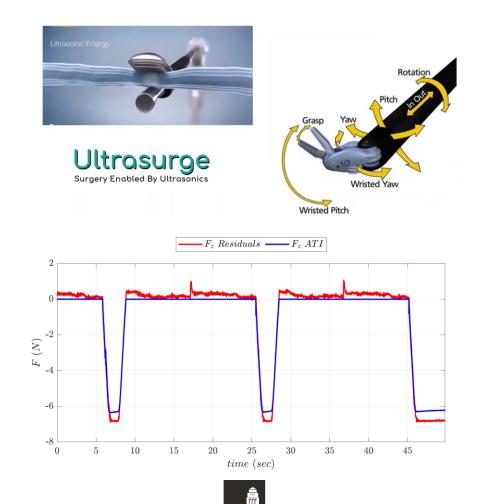


R. Moccia et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission*

Other Activities

Development of new surgical instruments (**MUSHA Hand II**): design and testing

H. Liu et al., "The MUSHA Hand II: A Multi-Functional Hand for Robot-Assisted Laparoscopic Surgery", IEEE/ASME Transactions on Mechatronics 2020


On-going Projects

Problem: Ultrasound (US) scan of human organ requires accurate movements in safety-critical site

Solution: Autonomous US scan using da Vinci robot and novel probes

Method:

- dVRK dynamic model definition
- Sensor-less force contact estimation

Collaboration with UNIVERSITY OF LEEDS

International Journal papers:

- **1. R. Moccia**, F. Ficuciello et al. "Multiple Tasks Execution using Control Barrier Functions in Surgical Robotics", *in submission (title is provisional)*, 2021.
- **2. R. Moccia**, C. Iacono, B. Siciliano, F. Ficuciello, "Vision-based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery", IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1650-1655, June 2020.
- 3. H. Liu, M. Selvaggio, P. Ferrentino, **R. Moccia**, S. Pirozzi, U. Bracale, F.Ficuciello, "The MUSHA Hand II: A Multi-Functional Hand for Robot-Assisted Laparoscopic Surgery", IEEE/ASME Transactions on Mechatronics, vol. 26, no. 1, pp. 393-404, February 2020.

International conference papers:

- D.E. Canbay, P. Ferrentino, H. Liu, R. Moccia, S. Pirozzi, B. Siciliano, F. Ficuciello, "Calibration of tactile/force sensors for grasping with the PRISMA Hand II", Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, In proceedings, Deft, Netherlands, 2021.
- **2. R. Moccia**, C. Iacono, B. Siciliano, F. Ficuciello, "Vision-based Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic Surgery", IEEE RAL Paper presented at IEEE International Conference on Robotics and Automation, Virtual Conference, 2020.
- **3. R. Moccia**, M. Selvaggio, L. Villani, B. Siciliano, F. Ficuciello, "Vision-based Virtual Fixtures Generation for Robotic-Assisted Polyp Dissection Procedures", Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, November 2019, pp. 7928-7933.

International conference papers:

- M. Selvaggio, A. M. Ghalamzan E., R. Moccia, F. Ficuciello and B. Siciliano, "Haptic-Guided Shared Control for Needle Grasping Optimization in Minimally Invasive Robotic Surgery", Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, November 2019, pp. 7734-7939.
- 5. C. Iacono, **R. Moccia**, B. Siciliano, F. Ficuciello, "Forbidden Region Virtual Fixtures for Surgical Tools Collision Avoidance", Proc. Institute for Robotics and Intelligent Machine the Conference, Rome, Italy, October 18-20, 2020.

Workshops papers:

- C. Iacono, R. Moccia, B. Siciliano, F. Ficuciello, "Vision-Based Dynamic Virtual Fixtures for Tools Collision Avoidance in MIRS", 10th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, Barcelona, Spain, September 28-30, 2020.
- 8. M. Selvaggio, A. M. Ghalamzan E., **R. Moccia**, F. Ficuciello and B. Siciliano, "Hapticguided shared control for needle grasping optimization in minimally invasive robotic surgery", Proc. Institute for Robotics and Intelligent Machine the Conference, Rome, Italy, October 18-20, 2019.
- **9. R. Moccia**, M. Selvaggio, F. Ficuciello, "Haptic-guided shared control for needle grasping optimization in minimally invasive robotic surgery", Hamlyn Symposium Workshop: From BCI to human robot augmentation, London, England, June 23-26, 2019.

Workshops papers:

- M. Selvaggio, A. M. Ghalamzan E., R. Moccia, F. Ficuciello, B. Siciliano, "Hapticguided needle grasping in minimally invasive robotic surgery", IEEE ICRA Workshop - Next Generation Surgery: Seamless Integration of Robotics, Machine Learning and Knowledge Representation within the Operating Rooms, Montreal, Canada, May 20-24, 2019.
- 10.R. Moccia, M. Selvaggio, B. Siciliano, A. Arezzo, F. Ficuciello, "Vision-based virtual fixtures generation for MIRS dissection tasks", 9th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, Genova, Italy, March 21-22, 2019.

