

Rocco Moccia

Tutor: Prof. Bruno Siciliano– co-Tutor: Fanny Ficuciello, PhD XXXIII Cycle - I year presentation

Visual Perception and

Autonomous Task Execution in

Robotic Surgery

Background

PAST EXPERIENCE

Shinohara.

Jun. 2015 Nov. 2015

EDUCATION

Sep. 2014 Jan. 2017

MSc in Mechanical Engineering at Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering. Thesis Supervisor: Prof. Paolo Cappa.

Master thesis student at Human Neuromuscular Physiology

Lab, Department of Applied Physiology, Georgia Institute of

Thesis topic: Improving physical Human-Robot Interaction

Technology, Atlanta (US). Supervisor: Prof.

through neuromuscular adaptive robot co-workers.

Dissertation: Design and Development of a Haptic Human-Robot Interface to study the effect of Co-Contraction Training on human motor control.

Rocco Moccia

Minoru

Current Position

CURRENT POSITION

Jan. 2018 Present

Ph.D. candidate at Università degli Studi di Napoli Federico II, Department of Information Technology and Electrical Engineering, PRISMA Lab and ICAROS center. Supervisor: Prof. Bruno Siciliano. Co-Supervisor: Fanny Ficuciello Ph.D.

UNIVERSITY OF LEEDS

Fellowship: Industrial PON Ph.D. program with Medical Micro Instruments MMI S.p.A and University of Leeds: Development of the control architecture of a semi-autonomous robotic platform for microsurgery.

Robotic Microsurgery

Research Field

Minimally Invasive Robotic Surgery (MIRS)

Problem

Research Topic:

- Robotics in Minimally Invasive Surgery and Microsurgery holds great potential, especially in tasks executed at limits of human capabilities:
 - Benefits: enhanced precision and repeatability; comfort of the surgeon; patient's outcomes
 - Limits: <u>visual perception</u>; force sensing; tools dexterity; <u>(semi-) autonomous control</u>

Objectives:

- Control algorithms for surgeon assistance during surgical procedures
- Stereo vision for scene detection, tracking of softtissues and surgical instruments
- Exploration of new visual sensing technologies: TeraHertz, Narrow band Imaging and Hyperspectral Imaging

Research Activity

Specific Problem: Tumor/Polyp Dissection

- precise movements
- high dexterity
- enhanced skills for region of interest identification and accurate path definition

Research Activity Methodology

Detection and Segmentation of the polyp: to define region of intervention

3D Reconstruction: to estimate the pose of the polyp

Haptic Guidance: Virtual Fixtures restrict the motion on a specific path

Research Activity Developments

Vision-based Virtual Fixtures Generation for MIRS Dissection Task

Virtual Fixture and Robot Position

Haptic Guidance Forces

R.Moccia, M.Selvaggio, B.Siciliano, A.Arezzo, F.Ficuciello. "Vision-based Virtual Fixtures Generation for MIS Dissection Tasks" CRAS 2019 Rocco Moccia

Products

Accepted Papers

 R.Moccia, M.Selvaggio, B.Siciliano, A.Arezzo, F.Ficuciello, "Vision-based Virtual Fixtures Generation for MIS Dissection Tasks" CRAS 2019 – 9th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, Genova, Italy, March 21-22, 2019.

Papers in Preparation (Titles are provisional)

- R.Moccia, M.Selvaggio, B.Siciliano, F.Ficuciello, "Vision-based Virtual Fixtures Generation for Polyp Dissection and Surgical Tools Collision Avoidance in Colon-Rectal Surgery", in preparation.
- M.Selvaggio, R.Moccia, B.Siciliano, F.Ficuciello, "Autonomous Virtual Fixtures Generation and Adaptation in Minimally Invasive Surgery: A Survey", in preparation.

Next Year

			Cr	edits	year	1					Cı	redits	s year	·2					Cı	redits	year	3				
		1	2	3	4	5	9			1	2	3	4	5	9			١	2	3	4	5	9			
	Estimated	bimonth	bim onth	bimonth	bim onth	bimonth	bim onth	Summary	Estimated	bim onth	bimonth	bim onth	bimonth	bim onth	bimonth	Summary	Estimated	bimonth	bimonth	bim onth	bim onth	bim onth	bim onth	Summary	Total	Check
Modules	20			3	3		13	19	11							0	0							0	19	30-70
Seminars	5	3,2	0,4	1			0,2	4,8	5,2							0	5							0	4,8	10-30
Research	35	5	6	6	6	6	6	35	45							0	60							0	35	80-140
	60	8,2	6,4	10	9	6	19	59	61	0	0	0	0	0	0	0	65	0	0	0	0	0	0	0	59	180

Year	Lecture/Activity	Туре	Credits	Certification	Notes
	MODULES				
1	Green Economy and Management in Engineering projects	External Module	3	х	
1	Summer School on Control of Surgical Robots (COSUR 2018)	Doctoral School	3	х	
1	Image Processing For Computer Vision	MS Module	9	х	
1	Geometric Theory of Soft Robots	External Module	4	х	
	SEMINARS				
1	EIT-Health Matchmaking Event 2018	Conference	3,2	х	
1	The Age of Human-Robot Collaboration	Seminar	0,4	х	
1	IBMQ: Building the First Universal Quantum Computers for Business and Science	Seminar	0,8	х	
1	How Does Mathworks Accelerate the Pace of Engineering and Science?	Seminar	0,2	х	
1	Domains of Attraction and Manifolds in Gear Model	Seminar	0,2	x	

