

Paolo Mirone Tutor: Prof. Andrea Irace XXIX Cycle - III year presentation

Advanced termination structures for HV Power Semiconductor Devices

Background

- Paolo Mirone received B.S. (2010) and M.S. (2013) degrees in Electronic Engineering from the University of Naples "Federico II".
- He is currently PhD Student with the Department of Electrical Engineering and Information technologies (DIETI) at University of Naples "Federico II".
- His tutor is the Prof. Andrea Irace.
- His research interests include modeling, simulation and experimental characterization of Power Semiconductor Devices.
- His doctoral activities have been performed in collaboration with Vishay Semiconductor Italiana.

Context

Context

Power Electronic

Power electronic is the key technology to reduce the consumption of energy by means of the enhancement of power conversion efficiency

Boost Converter configuration

Power Devices

Power conversion system are constituted by Power Semiconductor Devices acting as Power Switch.

Conversion system (I)

Power electronic circuit are used to control the power conversion

Conversion system (II)

Power electronic circuit are used to control the power conversion

Motivations

Modern trend for Power devices tends to a technology scaling

Termination Area

Reduction of die size at constant the voltage rate leads to **reduction of the ratio** between *Active Area* and *Termination Area*

Solution: New designs Problem: reliability and ruggedness requirements.

Active Area

Solution: Current density increment. Problem: Thermal **Reliability**

Activities

Design of **new Termination structures** for 1.2kV Power Devices:

- Parameters optimization Procedure.
- **Ruggedness** analysis.
- Investigation on **current crowding** phenomena.
- **Process fabrication** emulation.

Short-Circuit capability analysis on Field Stop (FS)-IGBT devices:

- Experimental measurements
- New design proposal

Other activities:

• Study and analysis of state-of-art modern Power Devices:

Reverse Conducting (RC)-IGBT

Approach

Short-Circuit Analysis on Active Area

Experimental characterization:

- Electrical measures
- UIS test
- ILS test
- Short-Circuit test

Edge Termination

Termination must prevent the depletion region to meet the lattice damage:

- Increases the Leakage current.
- Reduces the Breakdown Voltage capability

Why the Termination ?

Why the Termination ?

Why the Termination ?

Termination Techniques: FFR

During the years many techniques have been developed such as **Floating Field Ring (FFR), Field Plate, JTE, RESURF, SIPOS**

Floating Field Ring assisted by Field Plate

The potential along the termination depends on floating rings and field plates geometries

Termination Techniques: JTE

During the years many techniques have been developed such as **Floating Field Ring (FFR), Field Plate, JTE, RESURF, SIPOS**

JTE Termination Problem

Technological process fluctuation and/or the presence of impurities at the Silicon/Oxide interface can lead to Breakdown instability

Criticality: Sensitivity of the Breakdown Voltage (BV) to the *JTE Diffusion* doping profile

Target: To enlarge the *Breakdown Stability Range* of the termination to enhance the **Reliability** requirements.

Specific Activity

New Termination Design:

- SIPOS-JTE structure
- OGA-JTE structure

Design optimization procedure to maximize the Breakdown Voltage capability

SIPOS-JTE Termination: Optimization (I)

SIPOS-JTE parameters list and design rules.

Parameter	Symbol	Range
JTE Diffusion Length	Z	40-220 [µm]
Distance between JTE diffusions and field stop	X	0-5[µm]
Distance between JTE diffusions and field stop	S	100-280 [µm]
Oxide thickness	t_{ox}	1200-22000 [Å]
Field plate length	FPL	- [µm]
SIPOS Resistivity	ρ	$1x10^{3}-1x10^{7} [\Omega \cdot cm]$
Termination length	L	250-300 [µm]

Field Plate Engineering

Breakdown Voltage Vs X distance

SIPOS-JTE Termination: Optimization (I)

SIPOS-JTE Termination: Optimization (II)

Great rejection against interface impurity, especially for thin oxide thickness

Leakage current Vs SIPOS resistivity

BV Vs JTE Doping Concentration

SIPOS-JTE Termination: Optimization (II)

OGA-JTE Termination: Optimization (I)

OGA-JTE Termination: Optimization (II)

Field Plate assisted FFR Termination

List of Parameters

Parameter	Symbol
Distance between Rings	d_n
Ring width	W_n
Filed Plate Lengths	FPL_n

BV Vs Oxide Charge density

Superficial Electric Field distribution

Results comparison

Design	<i>Length</i> [µm]	<i>Xj</i> [μm]	Oxide charge rejection	<i>BV</i> [V]
FFR	500	6	~	1358
FFR	500	8	1	1401
SIPOS-JTE	250	6	1	1328
SIPOS-JTE	250	8	1	1332
SIPOS-JTE	300	6	1	1381
SIPOS-JTE	300	8	1	1359
OGA-JTE	400	6		1371
OGA-JTE	400	8		1360

SIPOS- JTE Termination

OGA- JTE Termination

Advantages:

- 250 µm of Saved area
- **Great** immunity against impurities and Process fluctuation

Criticalities:

- Resistivity control of SIPOS layer
- Oxide dimensioning

Advantages:

- 150 µm of Saved area
- Good immunity against impurities and Process fluctuation

Criticalities:

 Mask managing of the Outer Guard-Rings

Specific Activity

New Termination Design:

- SIPOS-JTE structure
- OGA-JTE structure

Ruggedness analysis by means of UIS simulations

Ruggedness: UIS Simulations

Avalanche Application: **Unclamped Inductive Switching Test (UIS)** is the standard test for evaluation of devices capability in avalanche operations [JEDEC standards N. JESD24- 5]

Rugged is evaluated considering the **thermal energy** absorbed during the UIS transitory until the **failure condition** (reaching of **700K**)

$$E = \frac{1}{2} L I_{MAX}^2 \frac{V_{BR}}{V_{BR} - V_{CC}}$$

During the **turn-on**:

$$\frac{di_{C}}{dt} = \frac{V_{DD}}{L} \implies I_{C,\max} = \frac{V_{DD}}{L}T_{ON}$$

During the **turn-off**:

$$\frac{di_{C}}{dt} = -\frac{V_{BR} - V_{DD}}{L} \implies T_{OFF} = \frac{LI_{C,\max}}{V_{BR} - V_{DD}}$$

SIPOS-JTE: UIS Simulations

Anode	Terminanation	Xj		lpeak = 104	N I	lpeak = 25A						
Peak [cm ⁻³]	Length [µm]	[µm]	L = 1mH [mJ]	L =40mH [mJ]	L = 100mH [mJ]	L = 1mH [mJ]	L =40mH [mJ]	L = 100mH [mJ]				
1x10 ¹⁶	250	6	8,5	7,7	7,5	0,65	0,64	0,64				
		8	7,2	6,5	6,5	0,65	0,65	0,65				
	300	6	5,2	4,8	4,8	0,7	0,7	0,7				
		8	13,1	10,8	10,7	0,7	0,7	0,7				
1x10 ¹⁷	250	6	53,4	49,7	49,7	39,5	39,4	39,5				
		8	59,3*	55,8	55,9	41,3	41,8	41,9				
	300	6	3,8	3,1	3,8	5,8	5,9	5,9				
		8	59,6*	57,3	57,5	37,6	37,6	37,5				

* Failure condition NOT occurred

SIPOS-JTE: UIS Simulations

X_J=6µm Breakdown Voltage [V] X_J=8µm 300 μm 📕 250 μm Normalized E_{OFF} [mJ]

SIPOS-JTE: UIS Simulations

Paolo Mirone

INFORMATION LECHNOLOG

SIPIS-JTE: UIS Simulations

The solution adopted has led to a considerable increment of the ruggedness.

A reduced FPL implies a lowering of about 30V of the Breakdown capability.

	Anode	Terminanation			lpeak = 10	A		Ipeak = 25A	¥.
	Peak [cm-3]	Length [µm]	Xj [μm]	L = 1mH [mJ]	L =40mH [mJ]	L = 100mH [mJ]	L = 1mH [mJ]	L =40mH [mJ]	L = 100mH [mJ]
NEW	1x10 ¹⁷	300	6	60,5*	52,9	52,8	41,5	41,8	41,8
OLD	1x10 ¹⁷	300	6	3,8	3,1	3,8	5,8	5,9	5,9

OGA-JTE: UIS Simulations

Anode Peak	JTE Peak	Xj	Ipeak	= 10A	Ipeak	: = 25A	
[cm-3]	[cm-3]	[µm]	L = 1mH	L = 100mH	L = 1mH	L = 100mH	************
1,1016	6x10 ¹⁵	6	En = 35,7 [mJ]	En = 31,0 [mJ]	En = 4,5 [mJ]	En = 4,5 [mJ]	· · · · · · · · · · · · · · · · · · ·
IXIO	5x10 ¹⁵	8	En = 44,9 [mJ]	En = 42,1 [mJ]	En = 34,7 [mJ]	En = 35,7 [mJ]	`
1,1017	6x10 ¹⁵	6	En = 43,6 [mJ]	En = 49,8 [mJ]	En = 45,6 [mJ]	En = 47,4 [mJ]	Current arounding
1X10-	5x10 ¹⁵	8	En = 52,8 [mJ]	En = 51,6 [mJ]	En = 54,0 [mJ]	En = 44,2 [mJ]	Current crowding
11016	2x10 ¹⁵	6	En = 10,1 [mJ]	En = 9,1 [mJ]	En = 4,5 [mJ]	En = 4,5 [mJ]	
IXIU-	2x10 ¹⁵	8	En = 27,7 [mJ]	En = 22,1 [mJ]	En = 48,2 [mJ]	En = 47,8 [mJ]	****
1::1017	2x10 ¹⁵	6	En = 8,8 [mJ]	En = 8,6 [mJ]	En = 14,7 [mJ]	En = 14,8 [mJ]	
IXIO	2x10 ¹⁵	8	En = 18,7 [mJ]	En = 19,0 [mJ]	En = 25,4 [mJ]	En = 25,6 [mJ]	
11016	1x10 ¹⁶	6	En = 45,9 [mJ]	En = 39,9 [mJ]	En = 29,3 [mJ]	En = 29,9 [mJ]	
IXIU**	1x10 ¹⁶	8	En = 62,9 * [mJ]	En = 49,3 [mJ]	En = 44,4 [mJ]	En = 44,9 [mJ]	
1,1017	1x10 ¹⁶	6	En = 59,3 [mJ]	En = 60,4 [mJ]	En = 29,8 [mJ]	En = 37,3 [mJ]	
1X101,	1x10 ¹⁶	8	En = 63,3 * [mJ]	En = 68,1 [mJ]	En = 50,7 [mJ]	En = 51,9 [mJ]	

* Failure condition NOT occurred

OGA-JTE: UIS Simulations

-100

0

100

200

The design must favor the generation of current paths in active area to increase E_{OFF} .

In every cases the failure is caused by the current crowding at the edge of the main junction.

0

100

200

300

400

-100

Paolo Mirone

300

400

Specific Activity

Short-Circuit capability analysis of the Active Area

Short-Circuit capability analysis

- Standard test used to "evaluate" ruggedness of Power devices, in terms of <u>energy/thermal limits</u>
- Usual requirement <u>for Silicon</u>: 10μs
 SC pulse with 2/3 V_{MAX}

[A] The failure occurs near the peak current¹

[B] The failure occurs during the steady state due to the high energy dissipation which produces a local increase of temperature²
 [C] The device fails at the turn-off³

¹T. Wikstorm, et Al, "Experimental study on plasma engineering in 6500 V IGBTs," in *Proc. ISPSD'00*

²J. Yamashita et Al, "A study on the short-circuit destruction of IGBTs," in Proc. 5th ISPSD

³Yamashita, et Al., "A study on the IGBTs turn-off failure and inhomogeneous operation," in *Proc. ISPSD'94*

Emitter Modulation

Short-Circuit capability is strictly related to the Saturation current

Saturation current can be reduced adopting the modulation of the Emitter diffusion region (N⁺)^{1,2}

The Emitter modulation can be defined as the ratio between N⁺-Emitter diffusion length along the z-axis and the elementary cell length along the z-axis expressed in percentage

Design	V_{on} [V] at $J_C = 100$ A/cm ²	I_{SAT} [A] at $V_{CE} = 10V$
M 25	1.429	17.3
M 50	1.288	28.7
M 75	1.244	39.4

1. H. Yilmaz, "Cell geometry effect on IGT latch-up," in IEEE Electron Device Letters

Specific Activity

Short-Circuit capability analysis of the Active Area

Calibration of a 3D elementary cell of a commercial FS-IGBT device

Elementary cell Calibration

SEM image

Measurements setup:

- Curve tracing
- ILS test for calculation of Lifetime dependence on temperature
- Short-Circuit test

Physical models calibration

Model	Symbol	Default Value	Calibrated Value
	$ au_n$	1x10 ⁻⁵ [s]	6.921x10 ⁻⁷ [s]
Scharfetter	$ au_p$	3x10 ⁻⁶ [s]	2.078x10 ⁻⁷ [s]
	N_{Ref}	$1 x 10^{16} [cm^{-3}]$	8x10 ¹⁵ [cm ⁻³]
	T_{lpha}	-1.5	3.5
	E_{trap}	0.33 [eV]	-0.2 [eV]
Anona	$\mu_{max,n}$	$1252 [cm^2/V \cdot s]$	1001.6 [cm ² /V·s]
Arora	$\mu_{min,n}$	88 [cm ² /V·s]	$70.4 [{\rm cm}^2/{\rm V}{\cdot}{\rm s}]$

Calibration results

- Experimental and simulation characteristic are achieved at different temperature
- Results show a good fitting of the simulated curves

Specific Activity

Short-Circuit capability analysis of the Active Area

Proposal of new Design able to increase the Short-Circuit capability

Design Proposal

Simulation results of the proposed design

Design	<i>Ipeak</i> [A] at T=25°C at T=150°C	Von [V] (at 200A) at T=25°C at T=150°C	τ _{sc} [μs] at T=25°C at T=150°C
STR1	1030	1.515	7.8
	979	1.557	5.3
STR2	892	1.552	8.5
	838	1.608	5.8
STR3	806	1.601	8.7
	750	1.682	6.3

The Salutation current reduces with increasing the *Transversal Cell Pitch*, resulting in a Short-Circuit capability increase.

Specific Activity

Other Activities

- Current crowding phenomenon
- Emulation of Termination fabrication process
- Study and analysis of RC-IGBT devices

NDR relation with filamentation

Vce [V]

Filamentation is a 3D effect

$$A_{Filament} = I_{Force} / J_{Valley}$$

In 2D analysis the transversal dimension has been set proportional to the Filament Area

> Simulations confirm the Experimental results

Lower ΔI allows to increase the failure time, hence, turn-off energy capability

Emulation of a FFR technological process

Sentaurus PROCESS tool

The process flow consists in the following steps:

- Epitaxial growing
- Oxide growing on the epitaxial layer
- Boron implantation and diffusion
- Trench Gate generation process
- Active area implantations and diffusions

Reverse Conducting (RC)-IGBT

- Study of the state-of-art design.
- Analysis of the Snap-back phenomenon correlated to the Buffer layer dimension and doping.
- Analysis of the carrier distribution during the transitory. Adoption of Lifetime Killing techniques.

$$V_{Snap-Back} = \frac{LI_0}{Zq\mu_n N_D (L_p + L_n)}$$

Credit Summary

		Credits year 1									С	redite	s year	2			Credits year 3									
		1	2	3	4	5	6			1	2	3	4	5	6			1	2	3	4	5	6			
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Total	Check
Modules	6			3		3		6	15		6				9	15	9						9	9	30	30-70
Seminars	5,1	0,2	1		2,8	0,5	0,6	5,1	5,2	1,2				2,4	1,6	5,2	0							0	10	10-30
Research	35	8	9	6	6	5	1	35	38	7	6	6	9	5	5	38	76	13	13	13	12	10	6	67	140	80-140
	46	8,2	10	9	8,8	8,5	1,6	46	58	8,2	12	6	9	7,4	16	58	85	13	13	13	12	10	15	76	180	180

Training abroad: Three moths period to the Fraunhofer Institute (ISIT) in Germany. Main activities were focused on Fabrication Process of Semiconductor Power devices.

Published/being published works

- <u>P.Mirone, et Al, "Area-Effective JTE-Based Terminations for 1.2 kV Power Diodes</u>" submitted to *Microelectronic Reliability*.
- L. Maresca, et Al, "*Physics of Current Limited Failures During Avalanche for 600V Fast Recovery Diodes*", accepted to *ISPSD 2017*.
- M. Riccio, et Al., "Accurate SPICE modeling of Reverse Conducting IGBTs including self-heating effect," *in IEEE Transactions on Power Electronics*, vol.PP, no.99, pp.1-1
- M. Riccio *et al.*, "An electro-thermal SPICE model for Reverse Conducting IGBT: Simulation and experimental validation," *2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD)*, Prague, 2016, pp. 343-346.
- A. Irace, et Al., "200 V Fast Recovery Epitaxial Diode with superior ESD capability", *Microelectronics Reliability, Volume 64*, September 2016, Pages 440-446
- <u>P. Mirone</u>, et Al., "On the avalanche ruggedness of optimized termination structure for 600 V punch-through IGBTs", *Microelectronics Reliability*, 6 Dec. 2015
- <u>Mirone, P.</u>; et Al., "A comprehensive study of current conduction during breakdown of Floating Field Ring terminations at arbitrary current levels," in *PCIM Europe 2015*; Proceedings of , vol., no., pp.1-8, 19-20 May 2015
- <u>Mirone, P.;</u> et Al., "An area-effective termination technique for PT-Trench IGBTs," *in Microelectronics Proceedings - MIEL 2014, 29th Int. Conf.* on , pp.273-276, 12-14, May 2014

Attended courses and seminars

Courses:

- Meccanica Quantistica Prof. Miano
- Europrogettazione Dr. Varchetta
- English Language Course Prof. Thomas
- Integrated Photonics Prof. Breglio
- System on Chip Prof. Petra

Seminars:

- Quantum Teleportation Prof. Miano
- Novel tendencies in power devices and circuits Prof. Castellazzi A
- High dimensional pattern recognition Prof. Sansone
- Fractional programming for energy efficiency in wireless networks Prof. De Maio
- Nano-carbon based components and materials for high frequency electronics -- Prof. Miano
- Circuiti quantistici Prof. Miano
- Towards agile flight of vision-controlled micro flying robots: from frame-based to event-based vision Prof. Siciliano
- Site reliability engineering at google Prof. Tramonatana
- Reliability and availability modeling in practice Prof. Cotroneo
- Capacity planning for infrastructure as a service cloud Prof. Cotroneo
- Efficient service distribution in next generation cloud networks Prof. Tulino
- Affidabilità di dispositivi e moduli elettronici di potenza Prof. Irace
- Test and diagnosis of integrated circuits Prof. Casola
- Gallium Nitride for power applications: benefits, challenges, and state of the art Prof. Napoli
- Analisi di segnali a banda larga mediante l'utilizzo di strumentazione Tektronix

• THANK YOU

Breakdown phenomenon

device Voltage is limited by Avalanche The Breakdown. It is a multiplication phenomenon of carriers depending on the Electric Field distribution within the semiconductor.

$$M(x) = 1 + \int_0^x \alpha_n M(x) dx + \int_x^W \alpha_p M(x) dx$$
$$I = M \cdot I_0 \quad \text{where } M \text{ is the avalanche Multiplication coefficient and } W \text{ is the deplation region width.}$$

....

PNP junction

where ALPHA in the gain of the PNP structure

Reach-Through during UIS simulations

FS-IGBT: Experimental Measurements

Extrapolated Lifetime Vs Temperature

Experimental set-up of the pulsed curve-tracer

Experimental and simulation comparison

