Francesco Marra

Tutor: Carlo Sansone – co-Tutor: Luisa Verdoliva

XXX Cycle - II year presentation

Digital Image Forensics in the era of social networks

DIGITAL IMAGE FORENSICS

Digital Image Forensics deals with the authentication and the analysis of a digital image aimed at providing useful evidence before a court [1]. We broadly focus on the two following topics:

- image integrity detection: it establishes if a digital image has undergone malicious post-processing or tampering;
- **image source identification**: it determines whether an image is taken \bullet from a given camera or model.

Nowadays it is extremely easy to share digital information thanks to the use of **social networks**. In 2014 more than 1.8 billion images and videos have been published on the net each day. Besides its explicit value, this wealth of visual data represents a precious source of information for investigations. In order to detect illegal activities and combat crime it is important to determine the origin of a visual asset and its integrity. Likewise, proving that a photo was taken by a given camera or has not been manipulated may be important before a court of law.

Which is the specific camera that has taken this photo?

Samsung A5 Huawei P9 lite iPhone 6

- **Image source identification** is typically based on the Photo-Response Non Uniformity (**PRNU**) noise of the camera
- PRNU-based methods assume that the camera PRNU pattern is known, or that a large number of images come from the target camera are available [2].
- These assumptions are not met in realworld applications, especially if we think of an open set scenario, like a social network. For this reason, we relax or remove this hypothesis, by developing a blind method.

IMAGE SOURCE IDENTIFICATION

PROPOSED METHOD: Blind Image Source Identification

Experimental Results

	Set	#Dev	Bloy2008	Amerini2014	Fahmy2015	Marra2016	proposed	Ncut oracle	CC oracle	- 450	Proposed - #cluster = 7 - ARI = 0.915	Set	#Dev	Bloy2008	Amerini2014	Fahmy2015	Marra2016	proposed	Ncut oracle	CC oracle	Proposed - #clus	cer = 12 - ARI = 0.847
SetModelsSet AI70, Z150, D200, μ , RCPSet BM1063, S710, DCZ, L74w, NV15Set Call ten modelsTABLE II: Heterogeneous datasets used in the experimentsFor each dataset (e.g., A) we consider three version, with one(A.1) two (A.2) or all (A.max) devices per model.	A.1 A.2 A.max	5 10	0.708 0.725	0.763 0.699	0.707 0.683	0.665 0.813 0.398	0.916 0.852	0.872 0.801 0.665	0.908 0.848 0.761	400 - Ko Nik 350 - Pra 300 - Sa	Kodak M1063 0 (464)	A.1 . A.2 1	5	0.272	0.301 0.233 0.134	0.196 0.106 0.033	0.402 0.471 0.538	0.723 0.592 0.532	0.305 0.294 0.171	0.513 0.567 0.569	400	Kodak M1063 0 (464)
											Nikon CoolPixS710 0 (186) Praktica DCZ5.9 0 (209)		10	0.395							400	Nikon CoolPixS710 0 (186)
		18	0.689	0.568	0.374		0.729				Samsung L74wide 0 (231)	A.max	. 18	0.244							350	Samsung L74wide 0 (231)
	B.1	5	0.388	0.722	0.722 0.324 0.911 0.915 0.722 0.736	- 250	Samsung NV15 0 (217)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.098	0.691 0.847		0.705 0.792		250	Samsung NV15 0 (217)							
	B.2 ts B.max	10	0.538	0.606	0.505	0.833	0.836	0.683	0.819	200	B.2 10 B.max 21	0.355	0.357	0.036	0.621	0.718	0.394	0.683				
		21	0.464	0.451	0.457	0.860	0.881	0.631	0.834	150		21	0.232	0.078	0.019	0.547	0.644	0.084	0.597			
	C .1	10	0.627	0.669			C.1	10	0.461	0.309	0.089	0.618	0.646	0.338	0.643	100						
	C.2	20	0.683	0.607	0.486	0.856	0.956	0.607	0.929	50		C.2	20	0.324	0.173	0.064	0.573	0.485	0.203	0.636		
	C.max	39	0.598	0.536	0.413	0.686	0.821	0.536	0.798	0		C.max	39	0.220	0.031	0.026	0.571	0.601	0.049	0.589		
	TABLE III: Performance on heterogeneous sets.										· · ·	TABLE V: Performance on heterogeneous sets after high quality uploading on FaceBook.								0		

Open issues

- (Big) Data
- Video
- Deep Learning

References

- [1] R. Kaur, A. Kaur, "Digital Forensics", International Journal of Computer Applications V.50 – No.5, 2012
- [2] J. Lukas, J. Fridrich, and M. Goljan, "Digital camera identification from sensor pattern noise", IEEE Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 205–214, 2006.
- [3] G. J. Bloy, "Blind camera fingerprinting and image clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 532-534, 2008.
- [4] O. Fahmy, "An efficient clustering technique for cameras identification using sensor pattern noise," in International Conference on Systems, Signals and Image Processing, pp. 249–252, 2015
- [5] I. Amerini, R. Caldelli, P. Crescenzi, A. D. Mastio, and A. Marino, "Blind image clustering based on the normalized cuts criterion for camera identification", Signal Processing: Image Communication, vol. 29, no. 8, pp. 831 - 843, 2014
- [6] J. Shi and J. Malik, "Normalized cuts and image segmentation", IEEE Transaction Pattern Analysis Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.
- [7] F. Marra, G. Poggi, C. Sansone, L. Verdoliva "Camera model identification through SPAM features", Multimedia Tools and Applications, 2016
- [8] N. Bansal, A. Blum, and S. Chawla, "Correlation clustering", Foundations of Computer Science. Proceedings, pp. 238–247, 2002
- [9] S. Bagon and M. Galun, "Large scale correlation clustering optimization", CoRR, vol. abs/1112.2903, 2011.
- [10] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, "Optimizing binary MRFs via extended roof duality", IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2007
- [11] D. Huang and J.-H. Lai and C.-D. Wang, "Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis", Neurocomputing, 2015

