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Digital Image Forensics
in the era of social networks

Digital Image Forensics deals with the authentication and the analysis of

a digital image aimed at providing useful evidence before a court [1].

We broadly focus on the two following topics:

• image integrity detection: it establishes if a digital image has
undergone malicious post-processing or tampering;

• image source identification: it determines whether an image is taken
from a given camera or model.

Nowadays it is extremely easy to share digital information thanks to the

use of social networks. In 2014 more than 1.8 billion images and videos

have been published on the net each day. Besides its explicit value, this

wealth of visual data represents a precious source of information for

investigations. In order to detect illegal activities and combat crime it is

important to determine the origin of a visual asset and its integrity.

Likewise, proving that a photo was taken by a given camera or has not

been manipulated may be important before a court of law.

• Image source identification is typically
based on the Photo-Response Non
Uniformity (PRNU) noise of the camera

• PRNU-based methods assume that the
camera PRNU pattern is known, or that
a large number of images come from
the target camera are available [2].

• These assumptions are not met in real-
world applications, especially if we
think of an open set scenario, like a
social network. For this reason, we
relax or remove this hypothesis, by
developing a blind method.

IMAGE SOURCE IDENTIFICATION

Samsung A5 iPhone 6

Which is the specific camera 
that has taken this photo?

Huawei P9 lite

DIGITAL IMAGE FORENSICS
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PROPOSED METHOD: Blind Image Source Identification

WEAC Ensemble ClusteringPRNU-based Affinity Matrix MLE-based Clustering RefinementCorrelation clustering
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The correlation between
images residuals coming from
the same camera are higher
than the ones coming
different camera

Recasting the problem as a graph G=(V,E,W) partitioning where:

V: each node denotes an image

E: each edge denotes an image-image relationship 

W: each edge weight measures pairwise similarity 
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Scaling with an α factor:
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• So that, if wi,j>0 i and j
coming from the same
camera/cluster

• Using multiple α we
obtain multiple partitions
for the next step

Running the Correlation Clustering with different parameter, we

obtain M base clustering P = 𝑷𝟏, 𝑷𝟐, … , 𝑷𝑴 . For each

partition 𝑷𝒊, we calculate the co-occurrence matrix S:

With the M similarity matrix we can obtain the Weighted
Evidence Accumulation matrix of WEAC [11]:

Using a Single-linkage clustering and calculating the objective k*
we obtain the desidered partition P(k*)

Experimental Results

Are 
Device Fingerprinting 
techniques effective 
on Social Networks?

Open issues

• (Big) Data

• Video

• Deep Learning 
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