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Background
• I received in year 2018 the Master Science degree cum laude in 
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Main Research Activity Overview

• Research Problem:  Fault-injection in cloud 
computing infrastructures for reliability issues

• Proposed Solutions:
– Fault-injection tool-suite
– Anomaly Detection Approach to Identify Failure 

Symptoms
– Machine Learning Approaches to Failure Mode 

Analysis
– A Monitoring Strategy to Runtime Failure Detection
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Further Research Activities 

• Automatic Generation of Software Exploits starting 
from Natural Language description
– Starting from description in English language, I developed 

an approach to automatically generate shellcodes in 
assembly and their encoding/decoding structures in 
Python/assembly

– The approach leverages Neural Machine Translation (NMT) 
techniques

• Research activity in collaboration with UNCC 
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Fault-injection in Cloud Infrastructures
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Data Logs

Ø Workload Logs
Ø System Logs
Ø Distributed Tracing
Ø …

// ~/nova/compute/api.py
// ORIGINAL CODE
// self.compute_task_api.schedule_and_build_instances

(instanceID, build_parameters)
// BUGGY CODE (missing parameter)
self.compute_task_api.schedule_and_build_instances

(instanceID)         

Workload



Open Issues
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Definition of 
the Fault Model

Execution of the 
FI experiments

Identification of the 
Failure Symptoms

X

X

X

Fault



Fault-Injection Tool-suite
• The tool provides a fault injection as a

service solution to automate and
accelerate the tests on the cloud
– It allows the user to customize faults

and introduce new faults
– Fault models validated in cooperation

with Huawei Technologies Co. Ltd.
– Use a mix of Python language elements

and/or DSL directives to describe code
pattern and replacement

• Provides advanced features
– Coverage analysis, Failure logging,

Failure propagation, Failure
visualization
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change {
// the code pattern

}
into {

// the code replacement
}



Empirical Analysis of Cloud Systems
Ø RQ1: Are failures actually “fail-stop”?

v Answer: In the majority of the cases, OpenStack does not behave in a «fail-
stop» way (late or no API error)

ü Suggestions: Mitigate failures by actively checking the status of virtual 
resources as in our assertion checks (e.g., checks incorporated in a monitoring 
solution)

Ø RQ2: Are failures logged?
v Answer: In a small fraction of the experiments, there was no indication of the 

failure in the logs
ü Suggestions: Improve logging in the source code (e.g., by checking for errors 

returned by the faulty function calls)

Ø RQ3: Are failures propagated across sub-systems? 
v Answer: In most of the failures, the injected bugs propagated across several 

OpenStack sub-systems. There were also relevant cases of failures that caused 
subtle residual effects on OpenStack

ü Suggestions: Improve resource clean-up on errors, to prevent propagation 
across service API calls and across subsystems.
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Identification of the Failure Symptoms
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Anomaly Detection Algorithm

• Compare faulty-traces with fault-free traces
using Longest Common Subsequence (LCS)
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Non-determinism of cloud systems
Not all the deviations are true anomalies

Probabilistic Model
Application of Variable order Markov Model on 

the deviations to discard benign variations



Experimental Evaluation of the 
Anomaly Detection

Pietro Liguori 16

Proposed 
Approach

(LCS with VMM)

Plain LCS 
(No probabilistic model)

Different 
Probabilistic 

Approach
(LCS with HMM)



Failure Mode Analysis
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Failure Data
(logs, message 

traces, ...)

Volume failure

Connection loss

Resource leak

Instance stalled

21%
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4%

6%

52%

Spurious anomalies:
+ Nova Client, POST 409 [REST API]
+ Nova Client, POST 400 [REST API]
+ q_plugin. get_active_network_info [MQ RPC]

Omission anomalies:
- Nova Client, POST 200 [REST API]
- Nova Compute, build_and_run_instance [MQ RPC]
- Cinder Volume, attach_volume [MQ RPC]

Failure data

Failure mode clustering
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- Nova Compute, build_and_run_instance [MQ RPC]
- Cinder Volume, attach_volume [MQ RPC]



Failure Mode Analysis

Pietro Liguori 18

Anomaly Detection

Node

Node

Node Traces under fault-
injected conditions

Traces under fault-free 
conditions

Fault injection

2

1
Instrumentation

3

A

B

C

Instrumented communication libraries
(REST APIs, Message Queues, …)

Fault-free monitoring

C
lu

st
er

in
g

6
Model training of normal 

behavior 4

5

Anomaly detection 
on traces

A

B

C

Clustering of failure 
modes

FAIL 
#1

FAIL 
#3

FAIL 
#2

Visualization7
Unsupervised ML applied on the top of 

the results of the anomaly detection

[1, 0, 9, … , 0, 3] i-th faulty 
trace

# of Anomalies

Event Type



DL Approach to Failure Mode Analysis
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Clustering Evaluation
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Workload
Clustering 
Approach DEPL NET STO

Clustering w/o fine-
tuning 0.80 0.78 0.87

Clustering with fine-
tuning 0.94 0.86 0.90

Deep Embedded 
Clustering 0.84 0.83 0.89

DEC approaches the performance of manually-
tuned clustering with anomaly detection



Runtime Failure Detection
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Rule Types

• Ordered-Events Rules (ORD): Events following 
always the same order and occurrence

𝑎 → 𝑏 → 𝑐
• Occurred-Events Rules (OCC): Events occurring 

without following any specific order and/or 
occurrence 

𝑎 → 𝑏 → 𝑏 → 𝑐 or    𝑎 → 𝑐 → 𝑏
• Counted-Events Rules (COUNT): Event repeated 

several times varying in a range of value
𝑚𝑖𝑛 < 𝑎 < 𝑚𝑎𝑥
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Experimental Evaluation of the 
Runtime Monitoring Approach

Approach Precision Recall F1 Score

OpenStack (OS) 1.00 0.36 0.53

Monitoring Rules (MR) 0.89 0.81 0.85

OS with MR 0.89 0.92 0.91
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