
Pietro Liguori
Tutor: Domenico Cotroneo – co-Tutor: Roberto Natella

XXXIV Cycle - III year presentation

Fault Injection for Cloud Computing Systems
From Failure Mode Analysis to Runtime Failure Detection

Background
• I received in year 2018 the Master Science degree cum laude in

Computer Engineering from the University of Napoli Federico II
• I attended a curriculum in Computer Engineering within the PhD

programme in Information Technology and Electrical Engineering at
the University of Napoli Federico II

• I received a grant from Ateneo Federico II
• I am part of the DESSERT (Dependable and Secure Software

Engineering and Real-Time Systems) research group, DIETI Department
• I collaborated with a research group in the College of Computing and

Informatics at the University of North Carolina - Charlotte (UNCC),
North Carolina, United States

Pietro Liguori 3

Credits Table

Pietro Liguori 4

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7 8

Es
tim

at
ed

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

Su
m

m
ar

y

Es
tim

at
ed

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

Su
m

m
ar

y

Es
tim

at
ed

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

Su
m

m
ar

y

To
ta

l

Ch
ec

k

Modules 25 0 2,2 6 9 3,6 4,8 26 10 4,3 0 0 6 0 0 10 5 0 0 4 2 0 0 0 0 6 42 30-70
Seminars 5 0,8 0 0,5 3,8 0,8 0 5,9 5 0 3,2 0 0 0 0 3,2 5 1,6 0 0 0 1,6 3,2 0 0 6,4 16 10-30
Research 30 9,2 7,8 3,5 0 5,6 5,2 31 45 5,7 6,8 10 4 10 10 47 50 6,4 8 4 6 6,4 4,8 8 4 48 125 80-140

60 10 10 10 13 10 10 63 60 10 10 10 10 10 10 60 60 8 8 8 8 8 8 8 4 60 183 180

Credits year 1 Credits year 2 Credits year 3

Main Research Activity Overview

• Research Problem: Fault-injection in cloud
computing infrastructures for reliability issues

• Proposed Solutions:
– Fault-injection tool-suite
– Anomaly Detection Approach to Identify Failure

Symptoms
– Machine Learning Approaches to Failure Mode

Analysis
– A Monitoring Strategy to Runtime Failure Detection

Pietro Liguori 5

Further Research Activities

• Automatic Generation of Software Exploits starting
from Natural Language description
– Starting from description in English language, I developed

an approach to automatically generate shellcodes in
assembly and their encoding/decoding structures in
Python/assembly

– The approach leverages Neural Machine Translation (NMT)
techniques

• Research activity in collaboration with UNCC

Pietro Liguori 6

Fault-injection in Cloud Infrastructures

Pietro Liguori 7

Data Logs

Ø Workload Logs
Ø System Logs
Ø Distributed Tracing
Ø …

// ~/nova/compute/api.py
// ORIGINAL CODE
// self.compute_task_api.schedule_and_build_instances

(instanceID, build_parameters)
// BUGGY CODE (missing parameter)
self.compute_task_api.schedule_and_build_instances

(instanceID)

Workload

Open Issues

Pietro Liguori 8

Definition of
the Fault Model

Execution of the
FI experiments

Identification of the
Failure Symptoms

X

X

X

Fault

Fault-Injection Tool-suite
• The tool provides a fault injection as a

service solution to automate and
accelerate the tests on the cloud
– It allows the user to customize faults

and introduce new faults
– Fault models validated in cooperation

with Huawei Technologies Co. Ltd.
– Use a mix of Python language elements

and/or DSL directives to describe code
pattern and replacement

• Provides advanced features
– Coverage analysis, Failure logging,

Failure propagation, Failure
visualization

Pietro Liguori 10

change {
// the code pattern

}
into {

// the code replacement
}

Empirical Analysis of Cloud Systems
Ø RQ1: Are failures actually “fail-stop”?

v Answer: In the majority of the cases, OpenStack does not behave in a «fail-
stop» way (late or no API error)

ü Suggestions: Mitigate failures by actively checking the status of virtual
resources as in our assertion checks (e.g., checks incorporated in a monitoring
solution)

Ø RQ2: Are failures logged?
v Answer: In a small fraction of the experiments, there was no indication of the

failure in the logs
ü Suggestions: Improve logging in the source code (e.g., by checking for errors

returned by the faulty function calls)

Ø RQ3: Are failures propagated across sub-systems?
v Answer: In most of the failures, the injected bugs propagated across several

OpenStack sub-systems. There were also relevant cases of failures that caused
subtle residual effects on OpenStack

ü Suggestions: Improve resource clean-up on errors, to prevent propagation
across service API calls and across subsystems.

Pietro Liguori 11

Identification of the Failure Symptoms

Pietro Liguori 12

Node

Node

Node

Step 2: Run the system
without fault injection;
collect fault-free traces

Step 3: Perform fault injection;
collect a faulty trace

Step 1: Instrument
communication APIs
(REST, Msg
Queues, ...)
for tracing

A

B

C

P
re

se
nt

at
io

n

Event timelines
(one per node)

A

B

C
Something
unexpected

happened in C!

Model training of normal
behavior

Anomaly detection

Step 4: Anomaly
detection on the

faulty traces
Step 5: Report
results to the

human analyst

Anomaly Detection Algorithm

• Compare faulty-traces with fault-free traces
using Longest Common Subsequence (LCS)

Pietro Liguori 15

Non-determinism of cloud systems
Not all the deviations are true anomalies

Probabilistic Model
Application of Variable order Markov Model on

the deviations to discard benign variations

Experimental Evaluation of the
Anomaly Detection

Pietro Liguori 16

Proposed
Approach

(LCS with VMM)

Plain LCS
(No probabilistic model)

Different
Probabilistic

Approach
(LCS with HMM)

Failure Mode Analysis

Pietro Liguori 17

Failure Data
(logs, message

traces, ...)

Volume failure

Connection loss

Resource leak

Instance stalled

21%

17%

4%

6%

52%

Spurious anomalies:
+ Nova Client, POST 409 [REST API]
+ Nova Client, POST 400 [REST API]
+ q_plugin. get_active_network_info [MQ RPC]

Omission anomalies:
- Nova Client, POST 200 [REST API]
- Nova Compute, build_and_run_instance [MQ RPC]
- Cinder Volume, attach_volume [MQ RPC]

Failure data

Failure mode clustering

21%

17%

4%

6%

52%

Spurious anomalies:
+ Nova Client, POST 409 [REST API]
+ Nova Client, POST 400 [REST API]
+ q_plugin. get_active_network_info [MQ RPC]

Omission anomalies:
- Nova Client, POST 200 [REST API]
- Nova Compute, build_and_run_instance [MQ RPC]
- Cinder Volume, attach_volume [MQ RPC]

Failure Mode Analysis

Pietro Liguori 18

Anomaly Detection

Node

Node

Node Traces under fault-
injected conditions

Traces under fault-free
conditions

Fault injection

2

1
Instrumentation

3

A

B

C

Instrumented communication libraries
(REST APIs, Message Queues, …)

Fault-free monitoring

C
lu

st
er

in
g

6
Model training of normal

behavior 4

5

Anomaly detection
on traces

A

B

C

Clustering of failure
modes

FAIL
#1

FAIL
#3

FAIL
#2

Visualization7
Unsupervised ML applied on the top of

the results of the anomaly detection

[1, 0, 9, … , 0, 3] i-th faulty
trace

of Anomalies

Event Type

DL Approach to Failure Mode Analysis

Pietro Liguori 19

Vector representation

Node

Node

Node

Traces under fault-
injected conditions

Execution with fault-
injection

1
Instrumentation

2

1

3

2

Instrumented
communication libraries

(REST APIs, Message
Queues, …)

Autoencoder4

3

FAIL
#1

FAIL
#3

FAIL
#2

Visualization6

Clusters of failure
modes

Clustering

Cluster
Layer

Encoder
embedded
features

5

Encoder Decoder

Reconstruction
Error

The approach uses Deep Embedded Clustering
(DEC) and does not require a manual effort by the

human analyst for feature engineering

Clustering Evaluation

Pietro Liguori 20

Workload
Clustering
Approach DEPL NET STO

Clustering w/o fine-
tuning 0.80 0.78 0.87

Clustering with fine-
tuning 0.94 0.86 0.90

Deep Embedded
Clustering 0.84 0.83 0.89

DEC approaches the performance of manually-
tuned clustering with anomaly detection

Runtime Failure Detection

Pietro Liguori 21

Node 1

Node 3

Node 2

Communication APIs
(REST APIs, MQs)

Stream
Processor

RV Process
Instrumentation

Fault-free
traces

Lightweight
Monitoring Rules

Monitor
Synthesis

Analysis

Collection of
correct executions

1

2

3

4

5

A A B B

Events

Rule Types

• Ordered-Events Rules (ORD): Events following
always the same order and occurrence

𝑎 → 𝑏 → 𝑐
• Occurred-Events Rules (OCC): Events occurring

without following any specific order and/or
occurrence

𝑎 → 𝑏 → 𝑏 → 𝑐 or 𝑎 → 𝑐 → 𝑏
• Counted-Events Rules (COUNT): Event repeated

several times varying in a range of value
𝑚𝑖𝑛 < 𝑎 < 𝑚𝑎𝑥

Pietro Liguori 22

Experimental Evaluation of the
Runtime Monitoring Approach

Approach Precision Recall F1 Score

OpenStack (OS) 1.00 0.36 0.53

Monitoring Rules (MR) 0.89 0.81 0.85

OS with MR 0.89 0.92 0.91

Pietro Liguori 23

Workload
Start

OS with
MR MR OS

0 440 458 554 seconds

Workload
End

Failure
Notification

Interval

Research Products (1/2)
International	Journals	Q1	(SCIMAGOJR)
1. D. Cotroneo, L. De Simone, P. Liguori and R. Natella, "Fault Injection Analytics: A Novel Approach to Discover

Failure Modes in Cloud-Computing Systems," in IEEE Transactions on Dependable and Secure Computing,
September 2020. DOI: 10.1109/TDSC.2020.3025289

2. D. Cotroneo, L. De Simone, P. Liguori, and R. Natella, “Enhancing the analysis of software failures in cloud
computing systems with deep learning,” in Journal of Systems and Software, Volume 181, 2021, 111043, ISSN
0164-1212. DOI: 10.1016/j.jss.2021.111043

International	Journals	Q2	(SCIMAGOJR)
3. P. Liguori, E. Al-Hossami, D. Cotroneo, R. Natella, B. Cukic, and S. Shaikh, “Can We Generate Shellcodes via

Natural Language? An Empirical Study”, in Automated Software Engineering, 2022, Accepted for Publication

International	Conference	A+	(GGS	Rating)
4. D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and N. Bidokhti, “How bad can a bug get? an empirical analysis

of software failures in the OpenStack cloud computing platform,” In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019), 2019, Association for Computing Machinery, New York, NY, USA, pp. 200–211.
DOI: 10.1145/3338906.3338916

International	Conference	A	(GGS	Rating)
5. D. Cotroneo, L. De Simone, P. Liguori and R. Natella, "ProFIPy: Programmable Software Fault Injection as-a-

Service," 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2020, pp. 364-372. DOI: 10.1109/DSN48063.2020.00052

Pietro Liguori 26

Research Products (2/2)
International	Conference	A-,	B	(GGS	Rating)
6. D. Cotroneo, L. De Simone, P. Liguori, R. Natella and N. Bidokhti, "Enhancing Failure Propagation Analysis in

Cloud Computing Systems," 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE),
2019, pp. 139-150. DOI: 10.1109/ISSRE.2019.00023.

7. P. Liguori, E. Al-Hossami, V. Orbinato, R. Natella, S. Shaikh, D. Cotroneo and B. Cukic “EVIL: Exploiting Software
via Natural Language,” 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE),
2021. DOI: 10.1109/ISSRE52982.2021.00042

Other	Conferences	and	International	Workshops
8. D. Cotroneo, L. De Simone, P. Liguori, R. Natella and N. Bidokhti, "FailViz: A Tool for Visualizing Fault Injection

Experiments in Distributed Systems," 2019 15th European Dependable Computing Conference (EDCC), 2019, pp.
145-148. DOI: 10.1109/EDCC.2019.00036.

9. D. Cotroneo, L. De Simone, A. Di Martino, P. Liguori and R. Natella, "Enhancing the Analysis of Error Propagation
and Failure Modes in Cloud Systems," 2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2018, pp. 140-141, DOI: 10.1109/ISSREW.2018.00-13

10. D. Cotroneo, L. De Simone, P. Liguori, R. Natella, and A. Scibelli, “Towards Runtime Verification via Event Stream
Processing in Cloud Computing Infrastructures,” In: Service-Oriented Computing – ICSOC 2020 Workshops (ICSOC
2020). Lecture Notes in Computer Science, vol 12632. Springer, Cham. DOI: 10.1007/978-3-030-76352-7_19

11. P. Liguori, E. Al-Hossami, D. Cotroneo, R. Natella, B. Cukic, and S. Shaikh, “Shellcode_IA32: A Dataset for
Automatic Shellcode Generation,” in Proceedings of the 1st Workshop on Natural Language Processing for
Programming (NLP4Prog 2021), 2021, pp. 58-54. DOI: 10.18653/v1/2021.nlp4prog-1.7

12. P. Liguori, C. Improta, S. De Vivo, R. Natella, B. Cukic and D. Cotroneo, “Can NMT Understand Me? Towards
Perturbation-based Evaluation of NMT Models for Code Generation”, in The 1st Intl. Workshop on Natural
Language-based Software Engineering (NLBSE 2022), Submitted for First Review

Pietro Liguori 27

