Pietro Liguori Tutor: Prof. D. Cotroneo – co-Tutor: Prof. R. Natella XXXIV Cycle - II year presentation Failure Mode Analysis in Cloud Computing Infrastructures

Research Context

Distributed systems often fail in complex and unexpected ways

Motivation

- Combinations of events and interactions between component can not be anticipated by the system designers
- Fault-Injection is an effective means to analyze failures of distributed systems
 - Failure specifications are written before the experiments
 - Specifications are not meant for discovering unknown failure modes
 - Writing failure specifications is a time-consuming and cumbersome task
- **Failure Mode Analysis:** Getting insights on how the distributed system can fail is valuable for system designers to plan informed strategies for failure detection, diagnosis, and recovery.

Needs

Fault-Injection needs to be supported by techniques for discovering new, unknown failure modes from the experimental data, which could otherwise be missed by a manual approach.

> We need to develop **tools** and methodologies to analyze and classify fault-injection experiments

Failure Modes	# of Exp.
Instance Failure	224
Volume Failure	151
Network Failure	52
SSH Failure	41
Cleanup Failure	69
No Failure	539

University Cooperation

I am a member of the **Dependable** and Secure Software Engineering Real-Time Systems (DESSERT), at DIETI – UNINA.

My Research group

http://www.dessert.unina.it

am collaborating with the University of North Carolina at Charlotte (UNCC), North Carolina, USA, on a new research topic. This research focuses on the automatic generation of software exploits by using the Neural Machine Translation (NMT) techniques.

Runtime Verification (RV) via stream processing in the cloud computing infrastructures

- Building a set of lightweight monitoring rules from correct executions of the system in order to specify the desired system behavior
- Synthesis of the rules in a **runtime monitor** that verifies whether the system's behavior follows the desired one

D. Cotroneo, L. De Simone, <u>P. Liguori</u>, R. Natella and A. Scibelli "Towards Runtime Verification via Event Stream Processing in Cloud **Computing Infrastructures**", International Workshop on Artificial Intelligence for IT Operations, December 2020

Ongoing and Future Activities

Automatic Software Exploit Generation

- Kickstarting a new research topic in collaboration with the University of North *Carolina at Charlotte (UNCC)*
- Generation of software exploits (e.g., *shellcodes)* from natural language
- Leveraging the **Neural Machine Translation**
 - techniques

