

PhD in Information Technology and Electrical Engineering

Università degli Studi di Napoli Federico II

PhD Student: Pietro Liguori

XXXIV Cycle

Training and Research Activities Report – Third Year

Tutor: Domenico Cotroneo – co-Tutor: Roberto Natella

Training and Research Activities Report – Third Year

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Pietro Liguori

Università degli Studi di Napoli Federico II

 2

1. Information

PhD candidate: Pietro Liguori
Date of birth: 07/09/1989
Master Science title: Master degree in Computer Engineering (cum laude), University of Naples Federico II
Doctoral Cycle: XXXIV
Fellowship type: PhD student grant (Grant Type: Academic)
Tutors: Prof. Domenico Cotroneo, Prof. Roberto Natella
Year: Third

I received my MS degree (cum laude) in Computer Engineering from the Univesità degli Studi di Napoli

Federico II in July 2018.

My master thesis focused on anomaly detection in distributed and complex systems such as cloud

computing infrastructures. To limit the massive number of false positives (due to the non-determinism of

distributed systems), I developed a novel approach of anomaly detection based on a probabilistic model.

I’m currently in the third year of the Ph.D. program in Information Technology and Electrical Engineering

(ITEE) at Federico II University of Naples, under the supervision of Prof. Domenico Cotroneo and Prof.

Roberto Natella.

2. Study and Training activities

During the third year, I attended the following courses and seminars.

Title Type Hours Credits Dates Organizer Certificate
International Workshop on
Artificial Intelligence for IT
Operations

Workshop
(Seminar)

8 1.6 December 14,
2020

University of
Berlin, Huawei
Munich
Research Center
and University of
Coimbra

Yes

Statistical data analysis for
science and engineering
research

Ad-hoc 12 4 April 2021 University of
Naples Federico
II

Yes

2021 Spring School on
Transferable Skills

Ph.D. school 12 2 May 4-5, 2021 University of
Naples Federico
II

Yes

The First Workshop on
Natural Language Processing
for Programming

Workshop
(Seminar)

8 1.6 August 6, 2021 Association for
Computational
Linguistics (ACL)

Yes

The 32nd International
Symposium on Software
Reliability Engineering (ISSRE
2021)

Conference
(Seminar)

16 3.2 October 25-
28,2021

IEEE Yes

 I also have been local organizer for the University of Naples Federico II of CyberChallenge.IT, the

first Italian introductory training program in cybersecurity for high-school and undergraduate

students.

Training and Research Activities Report – Third Year

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Pietro Liguori

Università degli Studi di Napoli Federico II

 3

3. Research activity

Failure Mode Analysis in Cloud Computing Infrastructures

In cloud computing infrastructures, the failure mode analysis is a difficult and time-consuming task, due to

the size and complexity of failure data. Moreover, failure mode analysis is hindered by the non-deterministic

behavior of cloud systems, which causes random variations in the timing and the ordering of events in the

system, thus introducing noise in the failure data. Therefore, failure mode analysis techniques must be

robust to noise in the failure data.

The adoption of unsupervised machine learning techniques, such as clustering and anomaly detection,

comes to the rescue but still faces some limitations. These techniques require the preliminary selection and

transformation features (feature engineering), to make the failure data more amenable for analysis. This

effort requires deep domain knowledge and represents a significant up-front cost.

During this year, I developed a novel approach for efficiently identifying recurrent failure modes from failure

data. The approach leverages deep learning for unsupervised machine learning, to overcome the challenges

of noise and complexity of the feature space. The approach saves the manual efforts spent on feature

engineering, by using an autoencoder to automatically transform the raw failure data into a compact set of

features. The approach transforms the data by jointly optimizing for the reconstruction error (i.e., the

transformed features are still representative of the sample) and inter-cluster variance (i.e., to make it easier

to identify groups of similar failures).

I evaluated the proposed approach on a dataset of thousands of failures from OpenStack, a popular platform

used in several private and public cloud computing systems, and the basis of over 30 commercial products.

As an additional contribution to this work, we publicly released this dataset for the research community. We

compare the proposed approach to a manually fine-tuned clustering technique. The results demonstrate that

the proposed approach can identify clusters with accuracy similar, or in some cases, even superior, to the

fine-tuned clustering, with a low computational cost.

Runtime Failure Detection of the Failures in Cloud Computing

Nowadays, the cloud infrastructures are considered a valuable opportunity for running services with high-

reliability requirements, such as in the telecom and health-care domains. Unfortunately, residual software

bugs in cloud management systems can potentially lead to high-severity failures, such as prolonged outages

and data losses. These failures are especially problematic when they are silent, i.e., not accompanied by any

explicit failure notification, such as API error codes, or error entries in the logs. This behavior hinders the

timely detection and recovery, lets the failures to silently propagate through the system, and makes the

traceback of the root cause more difficult, and recovery actions more costly (e.g., reverting a database state).

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7 8

E
s

ti
m

a
te

d

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

S
u

m
m

a
ry

E
s

ti
m

a
te

d

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

S
u

m
m

a
ry

E
s

ti
m

a
te

d

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

b
im

o
n

th

S
u

m
m

a
ry

T
o

ta
l

C
h

e
c

k

Modules 25 0 2,2 6 9 3,6 4,8 26 10 4,3 0 0 6 0 0 10 5 0 0 4 2 0 0 0 0 6 42 30-70

Seminars 5 0,8 0 0,5 3,8 0,8 0 5,9 5 0 3,2 0 0 0 0 3,2 5 1,6 0 0 0 1,6 3,2 0 0 6,4 16 10-30

Research 30 9,2 7,8 3,5 0 5,6 5,2 31 45 5,7 6,8 10 4 10 10 47 50 6,4 8 4 6 6,4 4,8 8 4 48 125 80-140

60 10 10 10 13 10 10 63 60 10 10 10 10 10 10 60 60 8 8 8 8 8 8 8 4 60 183 180

Credits year 1 Credits year 2 Credits year 3

Training and Research Activities Report – Third Year

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Pietro Liguori

Università degli Studi di Napoli Federico II

 4

To face these issues, more powerful means are needed to identify these failures at runtime. A key technique

in this field is represented by runtime verification strategies, which perform redundant, end-to-end checks

(e.g., after service API calls) to assert whether the virtual resources are in a valid state. For example, these

checks can be specified using temporal logic and synthesized in a runtime monitor, e.g., a logical predicate

for a traditional OS can assert that a thread suspended on a semaphore leads to the activation of another

thread. Runtime verification is now a widely employed method, both in academia and industry, to achieve

reliability and security properties in software systems. This method complements classical exhaustive

verification techniques (e.g., model checking, theorem proving, etc.) and testing.

I proposed a lightweight approach to runtime verification tailored for the monitoring and analysis of cloud

computing systems. I used a non-intrusive form of tracing of events in the system under test, and I build a

set of lightweight monitoring rules from correct executions of the system in order to specify the desired

system behavior. I synthesized the rules in a runtime monitor that verifies whether the system’s behavior

follows the desired one. Any runtime violation of the monitoring rules gives a timely notification to avoid

undesired consequences, e.g., non-logged failures, non-fail-stop behavior, failure propagation across sub-

systems, etc. The approach does not require any knowledge about the internals of the system under test and

it is especially suitable in the multi-tenant environments or when testers may not have a full and detailed

understanding of the system.

I investigated the feasibility of our approach in the OpenStack cloud management platform, showing that the

approach can be easily applied in the context of an ``off-the-shelf'' distributed system. In order to preliminary

evaluate the approach, I executed a campaign of fault-injection experiments in OpenStack. The experiments

show that the approach can be applied in a cloud computing platform with high failure detection coverage.

Automatic Software Exploit Generation from Natural Language Description

In the context of software security, a solid understanding of offensive techniques is increasingly important.

Well-intentioned actors, such as penetration testers, ethical hackers, researchers, and computer security

teams are engaged in developing exploits, referred to as proof-of-concept (POC), to reveal security

weaknesses within the software. Offensive security helps us understand how attackers take advantage of

vulnerabilities and motivates vendors and users to patch them to prevent attacks.

Among software exploits, code-injection attacks are the trickiest. They allow the attacker to inject and

execute arbitrary code on the victim system. Since the injected code frequently launches a command shell,

the hacking community refers to the payload portion of a code-injection attack as a shellcode. Writing code

injection exploits is a challenging task since it requires significant technical skills. Shellcodes are typically

written in assembly language, affording the attacker full control of the memory layout and CPU registers to

attack low-level mechanisms (e.g., heap metadata and stack return addresses) not otherwise accessible

through high-level programming languages. Another challenge for shellcodes is modern antivirus (AV) and

intrusion detection systems (IDS), which actively look for malicious payloads to block attacks.

To elude detection, shellcode writers weaponize their shellcode by implementing an encoding/decoding

strategy. In other words, writers have to develop encoders (typically, using Python) to obfuscate the original

shellcode without altering its functionality, and decoders} (typically in assembly language, as the shellcode)

to revert to the payload once it is loaded (and then executed) on the victim system.

In collaboration with the University of North Carolina at Charlotte (UNCC), in the United States, I

developed an approach for exploit writing based on natural language processing. The approach aims to

support both beginners and experienced researchers, by making exploits easier to create and flattening the

learning curve. In the approach, a machine learning system that learns about exploit writing from a dataset,

Training and Research Activities Report – Third Year

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Pietro Liguori

Università degli Studi di Napoli Federico II

 5

containing both real exploits and their description in the English language. Then, the writer describes the

exploit using the English language and lets the machine learning system translate the description into

assembly and Python code. The leverages recent advances in neural machine translation (NMT) to

automatically generate code from natural language descriptions using recurrent neural networks.

NMT has emerged as a promising machine translation approach, and it is widely recognized as the state-of-

the-art method for the translation of different languages. NMT has been adopted in many different areas, to

generate programs in the Python language, OS commands for the UNIX Bash shell, commit messages for

version control, code completion, test cases from security requirements, and more. However, NMT

techniques have not heretofore been applied in the field of software security in the manner described in the

proposed approach.

I also released substantive datasets containing exploits collected from shellcode databases and their

descriptions in the English language. Such data is valuable to support research in machine translation for

security-oriented applications since the techniques are data-driven.

4. Products

4.1 Publications

During the third year, I have produced the following products.

Conference Paper

1. Cotroneo, D., De Simone, L., Liguori, P., Natella, R., and Scibelli, A. (2020, December). Towards
Runtime Verification via Event Stream Processing in Cloud Computing Infrastructures. In
International Conference on Service-Oriented Computing (pp. 162-175). Springer, Cham.

2. Liguori, P., Al-Hossami, E., Cotroneo, D., Natella, R., Cukic, B., and Shaikh, S. (2021, August).
Shellcode_IA32: A Dataset for Automatic Shellcode Generation. In Proceedings of the 1st Workshop
on Natural Language Processing for Programming (NLP4Prog 2021) (pp. 58-64). Association for
Computational Linguistics.

3. Liguori, P., Al-Hossami, E., Orbinato, V., Natella, R., Shaikh, S., Cotroneo, D., and Cukic, B. (2021,
October). EVIL: Exploiting Software via Natural Language. In 2021 IEEE 32th International
Symposium on Software Reliability Engineering (ISSRE) (pp. XX-XX). IEEE.

4. Liguori, P., Improta, C., De Vivo, S., Natella, R., Cotroneo, D., and Cukic, B. Can NMT Understand
Me? Towards Perturbation-based Evaluation of NMT Models for Code Generation. In The 1st Intl.
Workshop on Natural Language-based Software Engineering (NLBSE 2022), Submitted for Initial
Review

Journal Paper

1. Cotroneo, D., De Simone, L., Liguori, P., and Natella, R. (2021). Enhancing the analysis of software
failures in cloud computing systems with deep learning. Journal of Systems and Software, 181,
111043.

2. Liguori, P., Al-Hossami, E., Cotroneo, D., Natella, R., Cukic, B., and Shaikh, S. Can We Generate
Shellcodes via Natural Language? An Empirical Study. In Automated Software Engineering (AUSE),
Resubmitted after minor revisions

Training and Research Activities Report – Third Year

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Pietro Liguori

Università degli Studi di Napoli Federico II

 6

5. Conferences and Seminars

5.1 Presentations made

During the third year, I have presented the following research products at international conferences:

1. Towards Runtime Verification via Event Stream Processing in Cloud Computing Infrastructures. In
International Conference on Service-Oriented Computing, December 14, 2021

2. Shellcode_IA32: A Dataset for Automatic Shellcode Generation. In Proceedings of the 1st Workshop
on Natural Language Processing for Programming (NLP4Prog 2021), August 6, 2021

3. EVIL: Exploiting Software via Natural Language. In 2021 IEEE 32th International Symposium on
Software Reliability Engineering (ISSRE), October 27, 2021

4. Enhancing the analysis of software failures in cloud computing systems with deep learning. Journal
of Systems and Software, presented at the ISSRE 2021 “Journal First, Conference Second” track,
October 28, 2021

5.2 Session Chair
At the Workshop on Software Certification (WoSoCer) 2021, co-located with the 32nd International

Symposium on Software Reliability Engineering (ISSRE 2021), I have been session chair of the session on

Design Models, Test Cases, Software Requirements (Session 3, October 25, 2021).

6. Activity abroad

Since January 2020 to December 2020, I have been at the University of North Carolina at Charlotte

(UNCC), North Carolina, USA, for my abroad period. At UNCC, I have worked on a new and innovative

research area under the supervision of Dr. Bojan Cuckic and Dr. Samira Shaikh. This new activity focuses on

the automatic generation of software exploits starting from natural language description by using the

Neural Machine Translation (NMT) techniques. The collaboration with the UNCC is still ongoing.

7. Tutorship

During the third year, I have been teaching assistant for the course of “Impianti di Elaborazione”, ING-INF/05

(Academic Year 2020/2021 and 2021/2022), prof. Domenico Cotroneo.

I have been co-advisor of the following thesis:

1. “Leveraging Neural Machine Translation to Automatically Generate Software Exploits”, Simona De
Vivo, MSc Thesis, Academic Year 2020/21

	PhD in Information Technology and Electrical Engineering
	Università degli Studi di Napoli Federico II
	XXXIV Cycle

	Training and Research Activities Report – Third Year
	Tutor: Domenico Cotroneo – co-Tutor: Roberto Natella

