

Isernia Nicola Tutor: Prof. Fabio Villone XXXIV Cycle - I year presentation

Electromagnetic Interaction of Fusion Plasmas with Conducting Structures

General Information

- M.Sc. In Electrical Engineering Universitá degli Studi di Napoli Federico II
- Erasmus at AAU, DK (project on Series Resonant Converters for DC Offshore Wind Power Plants)
- Master Thesis on Statistical Analysis of 3D effects of conducting structures on axisymmetric evolution of Fusion Plasmas
- Post-graduate internship at IPP Prague in support of COMPASS-U design (June-July 2018)
- Athenaeum Fellowship
- Research Group:

Electrical Engineering Group

Some Collaborations:

Framework: Fusion Energy

A candidate for future base-load energy

17.6

MeV

- Large Availability of Deuterium and Lithium on earth
- Low envorinmental impact
- Intrinsic Safety

$$H^2 + H^3 = He^4 + n +$$

Example: JET M18-33 Experiments											
I_p	2 MA										
B_{tor}	2 Т										
F_{z}	100 <i>tons</i>										
T _e	$17 \cdot 10^6 K$										

Fuel	MJ/kg
D-D	78 10 ⁶
D-T	338 10 ⁶
CH ₄	40

Engineering Open Problems:

- Electromagnetic Forces
 - Heat Loads
 - Plasma-Wall Interface

Framework: Fusion Energy

A candidate for future base-load energy

 Large Availability of Deuterium and Lithium on earth

2 MA

2 T

100 *tons*

 $17 \cdot 10^6 K$

SUN

CORF

- Low envorinmental impact
- Intrinsic Safety

Example: JET M18-33 Experiments

 I_p

 B_{tor}

 F_{z}

 T_e

Ph.D

$$H^{2} + H^{3} = He^{4} + n + MeV$$

Fuel	MJ/kg
D-D	78 10 ⁶
D-T	338 10 ⁶
CH ₄	40

Engineering Open Problems:

• Electromagnetic Forces

• Heat Loads

• Plasma-Wall Interface

```
Nicola Isernia
```

Year

100 City

Cars

Plasma-Conductors Interaction Framework \vec{B}_{plasma}

 \vec{B}_{ext}

Magneto Hydro Dynamic Models (Plasma)

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \vec{v}_{\alpha}) = S_{\alpha}$$

$$m_{\alpha}n_{\alpha}\frac{D}{Dt}\vec{v}_{\alpha} + S_{\alpha}\vec{v}_{\alpha} =$$

$$= q_{\alpha} n_{\alpha} (\vec{E} + \vec{v}_{\alpha} \times \vec{B}) - \nabla \cdot \overleftarrow{\Pi}_{\alpha} - \sum_{\beta \neq \alpha} \vec{R}_{\alpha\beta}$$

MQS Models (Conductors)

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \vec{j} = 0$$
$$\vec{j} = \sigma \vec{E}$$

[...]

Plasma-Conductors Interaction

Plasma-Conductors Interaction

Our Problem

 «Any bounded equilibrium plasma configuration with a magnetic field can exist only in presence of fixed currentcarrying conductors»¹

¹V.D. Shafranov – Chapter 2 in *Reviews of Plasma Physics* Edited by M.A. Leontovich 1966

Nicola Isernia

Plasma-Conductors Interaction

Methodology

E × F

Disruption Forces

Cross-Validation of Analytical and Numerical Models

²N. Isernia, et al, Plasma Physics and Controlled Fusion, Volume 61, Number 11, 2019.

Nicola Isernia

Overall Energy Balance

First principle estimation of Plasma Losses

- Compensation of Toroidal Magnetic Energy variation and $E_{tor} \times B_{pol}$ contribution to Poynting Flux for high B_{φ}
- **Development of simplified analytical model for plasma losses** ۲

³N. Isernia, et al, 46th Plasma Physics Conference of the European Physical Society, Milan, 2019 Nicola Isernia

10

Comparison of Experiment and Simulation for JET **Simulation**

Actual step:

- Modelling JET Magnetic diagnostics in CarMa0NL
- Modelling of plasma equilibrium configuration fitting magnetic measurements

Next steps:

- Comparison of magnetic measurements for a whole simulated experiment
- Comparison of measurements at different toroidal locations

What's next? Interface!

What's next? Interface!

Magneto Hydro Dynamic Models (Plasma)

$$\begin{pmatrix} \vec{B}_{pl}, \vec{J}_{pl} \end{pmatrix}$$
$$\left(\vec{B}_{ext}, \vec{J}_{ext} \right)$$

MQS Models (Conductors)

Publications

• Journal Papers

- V.V. Yanovskiy, N. Isernia, V.D. Pustovitov, F. Villone, D. Abate, P. Bettini, S.L. Chen, J. Havlicek, A. Herrmann, J. Hromadka, M. Hron, M. Imrisek, M. Komm, R. Paccagnella, R. Panek, G. Pautasso, S. Peruzzo, D. Sestak, M. Teschke, I. Zammuto, *"Comparison of approaches to the electromagnetic analysis of COMPASS-U vacuum vessel during fast transients"*, Fusion Engineering and Design, Volume 146, Part B, 2019.
- N. Isernia, V. D. Pustovitov, F. Villone,V. Yanovskiy, Cross-validation of analytical models for computation of disruption forces in tokamaks, Plasma Physics and Controlled Fusion, Volume 61, Number 11, 2019.
- Conference Proceedings
 - N. Isernia, V. Scalera, C. Serpico, F. Villone, "Energy balance during disruptions", 46th Plasma Physics Conference of the European Physical Society, Milan, 2019.
 - S. Chen, F. Villone, Y. Sun, B. Xiao, N. Isernia, G. Rubinacci, S. Ventre, "Simulation of disruptions in EAST tokamak", 46th Plasma Physics Conference of the European Physical Society, Milan, 2019
 - S. Jardin, F. Villone, C. Clauser, N. Ferraro, N. Isernia, G. Rubinacci, S. Ventre, *"ITER disruption simulations with realistic plasma and conductors modelling"*, 46th Plasma Physics Conference of the European Physical Society, Milan, 2019
 - V. Yanovskiy, N. Isernia, V.D. Pustovitov, F. Villone, et al. "Poloidal currents in COMPASS vacuum vessel during symmetrical disruptions: measurements using diamagnetic loop and comparison with CarMaONL modelling", 46th Plasma Physics Conference of the European Physical Society, Milan, 2019

I Year Credits

	Credits year 1							Credits year 2									Credits year 3									
		1	2	3	4	2	9			1	2	3	4	5	9			1	2	3	4	5	6			
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Total	Check
Modules	23	9	9.4		9			27	15							0	20							0	27	30-70
Seminars	7	0	0.6	0.7	1	0	3	5.3	3							0	5							0	5.3	10-30
Research	34	2	1	6.3	5	8	6	28	42							0	34							0	28	80-140
	64	11	11	7	15	8	9	61	60	0	0	0	0	0	0	0	59	0	0	0	0	0	0	0	61	180

Thank you for your attention!

Contact:

nicola.lsernia@unina.it – room 2.04 – building 3/a – Via Claudio, 21

Backup Slides

Plasma Conductors – Interaction

CarMaONL Numerical Coupling Scheme

Grad-Shafranov Equation

