

Antonio Guerriero

Tutor: Stefano Russo – co-Tutor: Roberto Pietrantuono

XXXIV Cycle - I year presentation

Testing in the context of Artificial Intelligence (AI):

the oracle problem

My Background

- Master degree in Computer Engineering
 - Thesis: "Reliability Assessment of Microservice Architectures"
- 1 conference Publication
 - R. Pietrantuono, S.Russo, A. Guerriero,
 "Run-time Reliability Estimation of Microservice Architectures",
 Proc. of the 2018 IEEE International Symposium on Software Reliability Engineering (ISSRE), Memphis, TN, USA, Oct. 15-18, IEEE, 2018,
 - Winner of "ISSRE 2018 Best Research Paper Award"

Period abroad

- From September 2nd 2019 I started a study and research period abroad (six-months) at Chinese University of Hong Kong,
- Visiting the group of prof. Michael Lyu (research areas: Software reliability; Software engineering; Distributed systems; author of the Handbook of Software Reliability Engineering)
- Started joint collaboration on software testing for AI-based systems

Prof. Michael R. Lyu
Chairman, Dept of Computer Science and Engineering
Chinese University of Hong Kong
IEEE Fellow

ACM Fellow
AAAS Fellow

The Chinese University of Hong Kong

Research activity: Overview

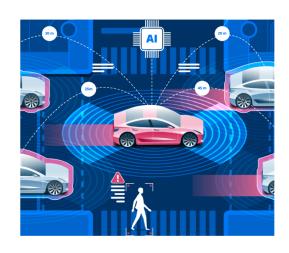
Problem:

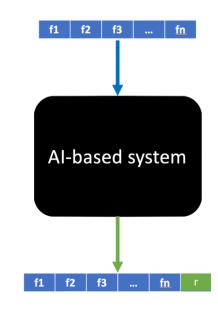
- Traditional software testing techniques not adequate to test programs based on Artificial Intelligence
- The "oracle problem": there is no reliable "test oracle" to indicate what the correct output should be for arbitrary input

• Objective:

Build an entity able to tell when the output of an AI-based program is wrong

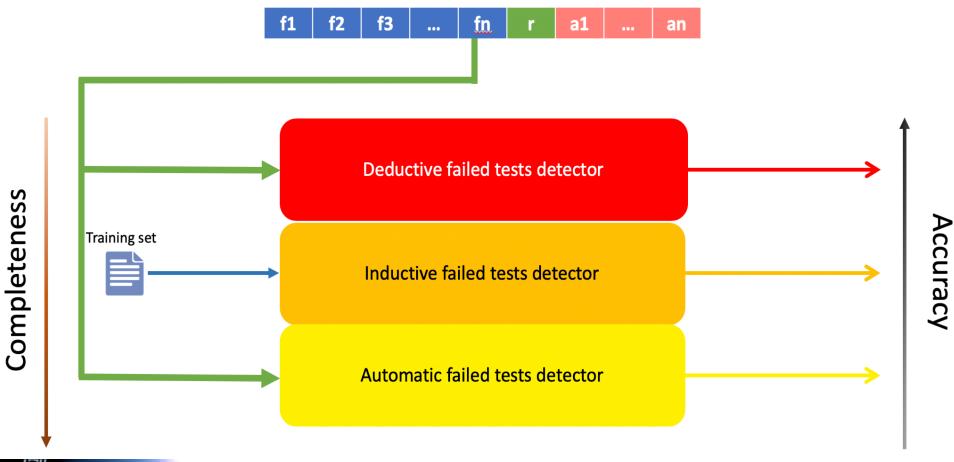
• Contribution:


 Definition of an architectural view of a test failure detector, which is able to detect a certain subset of failures, with an acceptable trade-off between accuracy and automation



Subjects

- We define as AI-based systems those that have an AI as main component
- This kind of systems are usually characterized by a very complex input (made by a feature vector), and by producing in output a response and a set of additional pieces of information (additional features) produced by the other components
- The behavior of the system is strongly dependent from the training set and from the chosen Al algorithm



Proposed architecture

Products

[P1]	A. Guerriero, R. Mirandola, R. Pietrantuono, S.Russo. "A Hybrid Framework for Web Services Reliability and Performance Assessment". 1st International							
	Workshop of Governing Adaptive and Unplanned Systems of Systems (GAUSS							
	2019), In: Proc. of the 2019 IEEE International Symposium on Software Reliability							
	Engineering Workshops (ISSREW), pp. 185-192, IEEE.							
[P2]	S. Russo, R. Pietrantuono, A. Guerriero, "Testing Microservice Architectures for							
	Operational Reliability". Software Testing, Verification and Reliability (Accepted							
	for publication).							
[P3]	S. Russo, R. Pietrantuono, A. Guerriero, A. Bertolino, B. Miranda, "Learning-to-							
	Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous							
	Integration". Submitted to the 42 nd International Conference on Software							
	Engineering (ICSE 2020), Seoul, Korea, May 2020. Status: under review.							
[P4]	S. Russo, R. Pietrantuono, A. Guerriero, A. Bertolino, B. Miranda, G. De Angelis,							
	"DevOpRET: Continuous Reliability Testing in DevOps". Submitted to Journal of							
	Software: Evolution and Process. Status: under review.							

First year credits and objectives

	Year 1								Year 2	Year 3		
		1	2	3	4	2	6					
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	Estimated	Total	Check
Modules	20	1.2	0.8	12.5	9.0		2.4	25.9	5	0	30.9	30-70
Seminars	10	1.2	1.0		10.0	0.4	0.2	12.8	0	0	12.8	10-30
Research	35	3.0	6.0	6.0	3.0	9.0	10.0	37.0	45	60	142	80-140
	65	5.4	7.8	18.5	22.0	9.4	12.6	75.7	50	60	185.7	180

