

PhD in Information Technology and Electrical Engineering

Università degli Studi di Napoli Federico II

PhD Student: Giovanni Gravina

XXXIV Cycle

Training and Research Activities Report – Third Year

Tutor: Prof. Carlo Forestiere

Training and Research Activities Report - Third Year

PhD in Information Technology and Electrical Engineering - XXXIV Cycle

Giovanni Gravina

1. Information

- a. Giovanni Gravina , MSc in Electronic Engineering University of Naples Federico II
- b. XXXIV Cycle- ITEE University of Naples Federico II
- c. Without fellowship Air Force Officer at 10^{th} Aircraft Maintenance Unit (Lecce)
- d. Tutor: Prof. Carlo Forestiere

2. Study and Training activities

a. Courses (credits in brackets)

"Nanotechnology for Electrical Engineering" (9)

"Introduzione ai Circuiti Quantistici" (9)

b. External Courses (credits in brackets)

27th Production Test Personnel Course (Flight Experimental Center- Pratica di mare)

"Avionics" (2) (10h)

"Performance" (2) (20h)

"Propulsion" (2) (15h)

"Flying and Handling Qualities & Flight Control System" (2) (20h)

"Armament System" (2) (10h)

"Flight Test " (4) (35h)

	Credits year 3							
	1	2	3	4	5	6	7	
	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Trimonth	Summary
Modules	9	9	10	0	4	0	0	32
Seminars	0	0	0	0	0	0	0	0
Research	7	7	7	7	7	7	6	48
	16	16	17	7	11	7	6	80

PhD in Information Technology and Electrical Engineering - XXXIV Cycle

Giovanni Gravina

3. Research activity

The guiding thread of my research activity has been the development of new spectral methods for the solution of full-wave electromagnetic scattering problems. Specifically, both sub-domain and entire-domain type bases have been used and compared. During the first year, the electromagnetic modes and the resonances of homogeneous, finite size, two-dimensional bodies had been examined in the frequency domain by a rigorous full wave approach based on an integro-differential formulation of the electromagnetic scattering problem. During the second year, the research was directed to the development of a static base that could simplify the numerical solution of electromagnetic scattering problems from a given object at multiple frequencies. The general approach had been outlined: starting from the RWG sub-domain basis set, by exploiting two more sub-domain coupled sets (loop and star), the entire domain static basis had been introduced. It is the union of two current-mode sets

• the irrotational and non-solenoidal eigenmodes of an electrostatic surface integral operator.

• the solenoidal and non-irrotational eigenmodes of a magnetostatic surface integral operator.

During my third year, the introduced approach has been fully developed and exploited to solve scattering problem. The surface currents of the Poggio-MIller-Chang-Harrington-Wu-Tsai Surface Integral Equation have been expanded in terms of the static surface modes and then solved via Galerkin-projection scheme.

The decomposition of the retarded green function into the static Green function and a proper difference has allowed the diagonalization of the integral integro-differential operator recurring.

In addition, the use of the static modes expansion combined with an appropriate rescaling and rearranging of the unknowns makes this formulation immune from the low-frequency breakdown problem, a common plague in SIE formulation.

The method has been validated by means of different scattering problems involving

- a sphere, in order to compare the solution obtained with the analytical one
- a rod, which is a shape often recurring in nano-optics contexts.

In all investigated cases, for particles of dimensions comparable to the incident wavelength, it has been proved that only a few modes are required to describe the electromagnetic scattering response.

4. Products

C. Forestiere, G. Gravina et al. "Static surface mode expansion for the full-wave scattering from penetrable objects", IEEE Trans. Antennas Propag. (submitted), arXiv:2201.11058 (2022).