
Ugo	Giordano
Tutor:	Prof.	Stefano	Russo
XXIX	Cycle - III	year presentation

In-production	continuous	testing	for	
future	Telco	Cloud

Short	bio
• Master	Degree	in	Computer	Engineering	

– University	of	Naples	Federico	II	in	2012.

• Member	of	the	DEpendable Systems	and	Software
Engineering	Research	Team	(DESSERT)
– led	by	Prof. Stefano	Russo

• 1-year	Fellowship	financed	by	PON	Project	“SECTOR”	
– Funded	 by	the	public-private	laboratory	COSMIC

• I	have	worked	in	applied	research	project	with	Finmeccanica
Company	and	Huawei	Technologies	(a	Chinese	TELCO	equipment	
Company)

Ugo	Giordano 2

Credit	Summary

• Experience	Abroad:	1	year	at	NOKIA	Bell	Labs	(USA),	from	April	
2016	till	March	2017,	under	the	supervision	of	Marina	Thottan
and	Catello Di	Martino	
– Resilience	assessment	of	the	Software	Defined	Network	platforms

Ugo	Giordano 3

Student: Ugo Giordano Tutor: Stefano Russo Cycle XXIX
ugo.giordano@unina.it stefano.russo@unina.it

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Es
tim

at
ed

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

Su
m

m
ar

y

Es
tim

at
ed

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

Su
m

m
ar

y

Es
tim

at
ed

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

bi
m
on
th

Su
m

m
ar

y

To
ta

l

C
he

ck

Modules 24 0 0 6 0 3 15 24 13 7 6 0 0 0 0 13 0 0 0 0 0 0 0 0 37 30-70
Seminars 6 0 0 3 0 2,7 2 7,7 8 1,8 3 0 0 0,3 8 13,1 0 0,8 0 0 0 0 0 0,8 22 10-30
Research 35 8 8 2 9 8 2 37 45 5 7 7 8 9 9 45 60 8 9 10 10 10 10 57 139 80-140

65 8 8 11 9 13,7 19 69 66 13,8 16 7 8 9,3 17 71,1 60 8,8 9 9 10 10 10 58 198 120-240

Credits year 1 Credits year 2 Credits year 3

Telco	Cloud
• Telco	Cloud	is	meant	to	provide	a	dedicated	cloud	computing	solution	for	

network	operators
– Shifting	from	dedicated	legacy	hardware	into	virtualized	software	components
– Delivering	Telco	applications	that	demand	 low	latency	and	high	 throughput
– Deploying	 state-of-the-art	data	center	components	 that	support	open	and	

interoperable	cloud	solutions
– Utilizing	fully	 IT	compliant	hardware	able	to	run	 the	most	common	 IT	cloud	

applications	in	parallel	with	Telco

• Traditional	Networking	is	not	the	proper	solution	for	Telco	Carrier	Clouds
– Closed	equipments and	over	specified
– Innovation	driven	by	equipment	vendor	
– Not	designed	for	virtualization	and	On-Demand	provisioning
– Not	cost	effective	(CAPEX	&	OPEX)

Ugo	Giordano 4

Software	Defined	Networking
• The	current	design	for	network	equipment	is	

monolithic/tightly	integrated
– Management	plane	/	configuration	
– Custom	Control plane	/	Decision
– Data	plane	/	Forwarding

• Software	defined	networking	(SDN)	is	an	
approach	for	designing,	building	and	managing	
computer	networks	that	separate	and	abstract	
elements	of	these	systems

• In	the	SDN	paradigm,	the	processing	does	not	
happen	in	the	same	device

Ugo	Giordano 5

Management/Policy	plane (Net	Apps)

Configuration	/	CLI	/	GUI

Control	Plane

Neighbor	
table

IP	routing	
table

Forwarding	 tableData	plane

Link	State	
Database

Distributed	Traffic	Forwarders

OpenFlowController

Management	and	Control	Plane

Network	Silos	

SDN	Key	Principles
• Logically	Centralized	Intelligence	
– SDN	separates	network	entities	 into	Control	

Plane	(the	brain)	and	Data	Plane	(the	muscles)	
network	entities	
• The	SDN	Controller	offers	a	logically	centralized	view	of	the	

network
• The	underlying	network	infrastructure	is	abstracted	for	

applications	and	network	services

• Programmability
– The	network	control	becomes	directly	

programmable	
– A	central	entities	maintains,	controls	and	

programs	the	data	plane	state

• Higher	Abstraction
– SDN	decouples	form	specific	networking	

hardware,	from	business	 applications,	and	from	
control	plane	and	virtualized	configuration

Ugo	Giordano 6

Network	Applications
Network	Applications

Control	 Plane
Network	Operating	

System

Network	Applications

Northbound	API

Data	Plane

Hardware	Abstraction	
Layer

Southbound	API

Switching	
Silicon/Hardware

Threats	to	Resilient	Carrier	Grade	SDNs
• The “softwarization”	approach	has	its	drawback
– Software	is	the	major cause	of	System	outages	

• Short-term service	delivery	does	not	allow	extensive	testing	
• Majority	of	outages	are	due	to	the	inability of	failovers	software	to	execute	as	expected

• High	resiliency is	the	answer	

Ugo	Giordano 7

Streaming Service Hit by 8h outage triggered
by failure of the network failover

LTE data outages caused by core service
delivery network failures

Amazon EC2 4 days East Cost outage in
because of network failures
Impact: several million $ refund to customers of the East

Coast availability region

Impact: 20+ millions users from California to Maryland
unable to get LTE services for 24h

Impact: 20,000,000 users affected

ALU 7750 updates cause network outage
Impact: 8h outage for 1,000 DSL customers

4%
5%
6%
7%
8%
9%

10%

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Distribution of System-wide outages/year (2002 – 2015)

Google	Insight	 for	Search:	Cloud	Computing

Amazon
Microsoft
Google

Outage	in:
Jul	08:	Amazon	S3

down	8.5h	due	to	one	
single	bitflip in	
Gossip	message

Oct	09:	MS	Azure
down	22h	due	to	
malfunction	in	the	

hypervisor Feb	11:	40K	Gmail	
Account	down	4	days	
due	to	a	bug	in	a	
storage	software	

update

Apr	11:	Amazon	EC2 US	
East	down	4	days	due	
to	Network	problem	
and	replicas	algorithm

2007 2008 2009 2010 2011

0%

10%

20%

30%

40%

50%
Breakdown of Telco Outages/year

Failures	are unavoidable

Open	Challenges	(1/2)
• SDNs	technologies	have	raised	new	challenges	of	achieving	network	

resiliency

– Due	to	the	decoupling	between	control	and	data	plane
• Network	resilience	depending	on	the	fault-tolerance	of	data-plane	and	on	the	high	

availability	of	the	(logically)	centralized	control	functions	
• The	latency	can	affect	the	communication	between	the	data	and	control	plane

– Due	to	the	natural	implementation	of	SDNs	as	distributed	systems
• The	SDNs	can	suffer	of	performance	loss	due	to	the	unbalance	of	the	network	resource	

management
• The	network	latency	can	affect	the	synchronization	process	between	the	SDN	controllers	

The	partitioning	of	the	SDN	cluster	can	lead	to	network	partitioning	and	inconsistent	
global	network	state

– Due	to	the	adoption	of	technologies	to	virtualize	the	network	services	
• Failures	periodically	occur	in	data	center	and	cloud	ecosystems	

Ugo	Giordano 8

Open	Challenges	(2/2)
• There	is	the	need	of	a	methodology	and	tools	to:

– Characterize	the	resiliency and	reliabilityof	an	SDN	platform
ü RQ1:	Is	the	SDN	controller	resilient	 to	failure	scenarios?
ü RQ2:	Is	the	SDN	distributed	platform	resilient	to	controller(s)	failures?
ü RQ3:	How	the	SDNs	performance	and	availability	are	affected	by	faulty	
conditions?

– Assess	the	efficacy and	effectiveness of	the	SDN	resilience	
mechanisms
ü RQ4:	Are	the	SDNs	resilience	mechanisms	efficient	enough	to	meet	the	5	nines	
availability	requirement	of	Carrier	Network?
– Efficacy	of	the	failure	detection	and	mitigation
– Effectiveness	of	the	failover	and	fallback	functionalities
– Ability	 to	maintain	a	consistent	view	of	the	network	under	 faulty	conditions

Ugo	Giordano 9

Research	Context:	a	Bell	Labs	Vision	for	Future	Telco	

• Improving	 the	network	resilience	through	 in-production	continuous	testing
– Failure	injection as	a	mean	to	generate	ground	truth	on	

• Effectiveness	 of	detection	mechanisms	(How	well	does	the	system	detect	the	failure?)
• Effectiveness	 of	recovery	(How	well	does	the	system	react	to	a	failure?)
• Manifested	failures	(What	did	it	happen?)	

– Continuous	feedback	on	the	system	resilience	and	reliability
• On-line	improvement	of	the	failure	detectors	and	failover	
• Observing	the	system	behavior	under	know	faulty	conditions	

– Failure	injected	at	different	layers	of	the	Telco	infrastructure	
• Data	Plane:	emulate	faulty	network	appliances	
• Infrastructure	Level:	emulate	faulty	physical	nodes	or	virtualized	hosts
• Control	Plane:	emulate	faulty	network	controllers	

Ugo	Giordano 10

v Latency
v Packet

drop/corruption
v Switch hang
v CRC Errors

v Pre/Post FEC BER
v Optical

Impairments
v Fiber cuts

Data Plane
Failure Injection

v Controller Crash/Hang
v Controller Overload
v Controller’s Service Errors
v Consistency Errors
v Control-to-Data Plane

Communication Problems
v Network Partitioning (Split Brain)

Infrastructure
Failure Injection

Virtualized Layer Failures:
v Crash/Hang (VM/OS)
v Resources Starvation (VM/OS)
v I/O failures

Infrastructure Failures:
v Host Crash/Hang
v Hardware Failures
v Resource Overload
v Hypervisor Failures/Errors
v I/O failures

Control Plane
Failure Injection

In-Production Continuous Testing for Future Telco Cloud

Fa
ilu

re
 In

je
ct

io
n

A
PI

C
on

tin
uo

us
 M

on
ito

rin
g

A
PI

Network Operating System

SDN
Controller

Replica

SDN
Controller

Replica

SDN
Controller

Replica…

Why	Failure	Injection	Testing?
• Failures	are	unavoidable in	complex	ecosystems,	such	as	SDNs

– Even	if	a	system	is	designed	to	be	fault	tolerant
• Exception handling, fault tolerance and isolation, redundancy, etc.

– … and	was	tested	to	increase	the	confidence	on	its	quality
• Unit	testing,	integration	testing,	stress/load	testing,	etc.

– … testing	distributed	system	is	hard
• Web	scale	traffic,	complex	 interactions	between	subsystems,	3rd party	services,	etc.
• Traditional	software	testing	techniques	appear	insufficient to	evaluate	 the	resilience	 and	

availability	of	a	distributed	ecosystems	

• To	be	more	proactive,	for	ensuring	the	fault	tolerant	mechanisms	without	to	wait	
the	occurrence	of	a	failure
– Harnessing	 failure	injection	to	ensure	that	the	system	is	fault-tolerant
– Continuously	test	the	system	ability	 to	survivor	“rarely”	
– Inject	failures	during	production	hours

• To	simulate	 failures	modes	that	are	possible	in	a	production	environment	
• To	simulate	 failures	modes	under	controlled	circumstances	
• Exploiting	 real	workload	instead	of	synthetic	workload	

Ugo	Giordano 11

Failure	Injection	Testing:	Netflix	and	others
• Failure	injection	techniques	are	widely	used	in	both	industrial	and	research	fields

– Netflix	created	chaos	monkey
• A	wide	range	of	tools	to	deliberately	 inject	failures	in	their	 complex	

“micro-services”	 ecosystem
• Aiming	to	assess	the	resilience	 of	the	distributed	platform	to	

random	(chaos)	failures,	e.g.	services	crashes,	corrupted																																													
communications	…

– Along	this	line	they	proposed	the	chaos	engineering
principles
• “A	discipline	of	experimenting	on	a	distributed	system	in	order	to	build	confidence	in	

the	system’s	capability	to	withstand	 faulty	conditions	 in	production”	

• Besides	Netflix,	other	organizations	apply	similar	techniques	 to	continuously	test	
the	resiliency	of	their	services
– Amazon	and	Google	

• Amazon	created	GameDay,	a	program	designed	to	increase	resilience	by	injecting	major	faults	into	
critical	systems

– Microsoft
• Microsoft	exploits	 Chaos	engineering	(Search	Chaos	Monkey)	to	test	the	resilience	of	its	Azure	

Search	service
– Facebook

• Facebook	continuously	 runs	 infrastructure	stress	test	to	assess	 the	resilience	of	the	overall	system	
beyond	 their	platform	(Facebook	Stress	Test)

Ugo	Giordano 12

SDN	resilience	assessment:	a	failure	injection	methodology

Ugo	Giordano 13

1a. definition of
workload

parameters

WORKLOAD

3. workload
generation and

execution

SDN TESTBED

CONTROLLER

2. SDN controllers startup
and functionality checks,

monitoring setup

INJECTOR

1b. definition of
failure model

M1 M2 MN---

4. failure
injection

METRICS
COMPUTATION

5. stop
monitoring

and
data collection

6. SDN
controllers

cleanup
ü System
ü Network
ü Service

• We	propose	a	methodology	and	infrastructure	for	continuous	testing	in	carrier-
grade	SDNs	by	 an	automatic	and	configurable failure	injection	framework	
– The	approach	aims	at	assessing	the	effectiveness	of	the	SDNs	resilience	mechanisms
– enables	to	inject	failure	in-production	environment
– provides	feedback	to	propose	 improvement	for	the	resilience	of	the	nowadays	SDNs	

The	Failure	Model

Ugo	Giordano 14

• The	failures	can	be		set	as:
– Transient:	injected	only	once	and	removed	after	a	

specified	amount	of	time	(emulate	temporary failure)		

– Intermittent:	periodically	injected	and	left	in	the	
system	for	a	specified	amount	of	time	(emulate	
temporary	but	recurrent faulty	conditions)	

– Permanent:	injected	and	never	removed	from	the	
system	(emulate	persistent faulty	conditions)	

Target Node 1

Operating System

CPU Memory StorageNetwork
Interfaces

Application Container

Controller Instance

ONOS
ServiceONOS

ServiceService

Target Node N

Operating System

CPU Memory StorageNetwork
Interfaces

Application Container

Controller Instance

ONOS
ServiceONOS

ServiceService

…

TCP

Service Failure Network FailureSystem Failure

• We	use	failure	modes	that	encompass	most	of	the	common	failure	observer	in	
distributed	systems

1. System	Failures:	affecting	the	computational	resources	as	well	as	I/O	operations		of	a	target	
node.	

The	Failure	Model

Ugo	Giordano 15

2. Network	Failures:	affecting	the	communication	between	SDN	controllers,	and	the	data-
control	plane	communication

3. Service	Failures:	affecting	the	SDN	controller	services	

A	failure	injection	infrastructure	(1/3)

Ugo	Giordano 16

• The	infrastructure	encompasses	three	main	components,	each	in	turn	
composed	of	a	set	of	interoperating	sub	components:

1. The	Workload	Generator	produces	the	workload	for	the	SUT
Ø It	is	a	a	standalone	benchmarking	tool	for	the	Northbound	 Interfaces	of	the	SDN	
controllers
• Offline	 and	on-line	 configurability
• Providing	 high	level	performance	measurements	of	the	SDN	controller(s)

Ø Intent/Flow	request	throughout	
Ø Intent/Flow	request	 latency	
Ø System	availability

Target SDN Controller
node

SDN Controller
Instance

Host
Agent

Collector
Agent

Fi-
manager

Target SDN Controller
node

SDN Controller
Instance

Host
Agent

Collector
Agent

Fi-
managerFailure Injector Control Host

FI-ControlInjection
Automation

Injection/Configuration API

Load Generator Host

Round Robin Request
Scheduler

Load
Generator

Metric
Compute
Module

Failure Injection
Request

Data Collector Host

Data
Collector

Metric
Compute
Module

Target SDN Controller
node

SDN Controller
Instance

Host
Agent

Collector
Agent

Fi-
manager

Ø Reproduces	policy-based	application	requests,	 the	
Intent	Requests
• An	Intent	is	an	immutable	request	model	specifying	 the	
requirements	of	an	application’s	 demand,	which	specify	
how	the	network	must	be	programmed	at	low	level	

Ø Equally	distributes	the	requests	towards	the	
northbound	 API	of	the	deployed	controllers	

A	failure	injection	infrastructure	(2/3)

Ugo	Giordano 17

2. The	Failure	Injector is	an	extensible	ready-to-use	component	which	can	be	
integrated	seamlessly	into	the	target	system	to	inject	multiple	failure	modes.	
It	includes:
Ø A	failure	injection controller:

• Provides	 a	REST	interface	to	the	end-user	 to	define	 the	failure	injection	 parameters	
• Translates	user	requests	into	corresponding	 request	for	the	injection	manager
• Provides	 an	internal	engine	to	automate	the	failure	injection	 experiments	and	data	collection	

Ø A	failure	injection	managerwhich	is	responsible	 to	actually	perform	the	injection	
on	the	target	SDN	controller

Virtual or Physical machine

OS

Intent
Requests

Virtual or Physical machine

OS

FI-Manager

Pub-Sub Service

Injection Agent
Manager

Receive/Send
Injection
Req./Res.

SDN
Abstraction

Layer

OS
Abstraction

Layer

Spawn
FI-Worker

SDN Level
Injection

Host Level
Injection

FI-Worker
FI-Worker

FI-Worker

SDN
Controller
Instance

FI-Controller

Pub-Sub Service

FI-Service

Failure Model
Service

REST
Interface

Injection
parameters

Create Failure
Scenario

Send/Receive
Injection Req./Res. Injection

Msgs

A	failure	injection	infrastructure	(3/3)

Ugo	Giordano 18

3. The	Data	Collector	is	in	charge	of	collecting	the	data	concerning	to	the	
system	under	consideration	

Ø Listen	to	and	reporting	 the	events	occurring	 in	the	SDN	ecosystem

ØCollecting	metrics	concerning	 the	resource	consumption	 of	the	SDN	controller	
hosting	machines	

ØAllows	the	collection	of	metrics	exploitable	to	compute	some	basic	measurements	
of	the	effectiveness	and	efficacy	of	the	system	resilience	mechanisms
• Recovery	time	(time	the	controller	needs	to	synchronize	its	status	with	the	other	controllers	and	the	data-plane)	
• Detection	latency	(time	needed	until	a	faulty	condition	is	detected	by	the	controllers)
• Reaction	time	(the	time	needed	to	activate	the	failover	of	a	faulty	controller)

Failure
injection

Waiting	random	time VM/Controller	down VM/Controller	restart	time Controller	 recovery

VM/Controller
restart

detection	time recovery	time

data/packet/flow	loss

reaction	time

The	testbed

Ugo	Giordano 19

Cluster
communication

Data
collection

Data
collection

NOKIA AirFrame Management Switch

Controller Node

VMware
ESXi

NOKIA AirFrame Cloud Host 3

Controller
Node

Workload
Node

Data Plane
Simulator

NOKIA AirFrame Cloud Storage

Virtual Machines

VMware
ESXi

Data Collector
Server

SDN Controller Instances
(failure injection targets)

VMware
ESXi

NOKIA AirFrame Cloud Host 1

ONOS
Instance 1

ONOS
Instance 3

ONOS
Instance 4

SDN Controller Instances

VMware
ESXi

NOKIA AirFrame Cloud Host 2

ONOS
Instance 2

ONOS
Instance 5

ONOS
Instance 6

EP1) 1 ONOS instance

EP2) 2 ONOS instance

EP3) 6 ONOS instance

Legend Experimental Design

Ongoing	activities

Ugo	Giordano 20

• Work	in	progress
– Experimental	evaluation	of	the	Intent	Based	Networking	 (IBN)	framework	

provided	by	Open	Network	Operating	System	(ONOS)	and	Open	Daylight	(ODL)	
– Experimental	evaluation	of	the	resilience	and	a	reliability	of	ONOS	and	ODL	

under	 faulty	conditions

• What’s	next	
– Extend	the	failure	model	with	further	failure	scenarios
– Propose	possible	performance	improvement	for	the	IBN	
framework	

– Propose	optimization	of	the	resilience	mechanisms	
provided	by	the	SDN	controllers

Publications	and	References
[1] Carrozza, G., Cinque, M., Giordano, U., Pietrantuono, P. & Russo, S. (2015). Prioritizing correction of static

analysis infringements for cost-effective code sanitization. In Proceedings of the 2th International Workshop
on Software Engineering Research and Industrial Practices (SER&IPs 2015). 37th “International Conference
on Software Engineering” (ICSE 2015), Florence, May 16th to 24th.

Ugo	Giordano 21

[2] Diego Kreutz, Fernando M. V. Ramos, Paulo E. Verissimo, Christian E. Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-Defined
Networking: A Comprehensive Survey. Pro- ceedings of the IEEE, 103(1):14–76, 2015.

[3] BrunoA.A.Nunes,MarcMendonca,Xuan-NamNguyen,KatiaObraczka,andThierryTurletti. A survey of Software-Defined Networking: Past, Present,
and Futureof ProgrammableNet- works. IEEE Communications Surveys Tutorials, 16(3):1617–1634, 2014.

[4] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing Dependability with Software Fault Injection: A Survey. ACM
Computing Surveys, 48(3):44:1–44:55,2016.

[5] ONOS Project. ONOS WhitePaper. http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf (accessed January 2017),
2014.

[6] Catello Di Martino, Veena Mendiratta, and Marina Thottan. Resiliency Challenges in Ac- celerating Carrier-Grade Networks with SDN. In
Proceedings of the 46th Annual IEEE/IFIP International Conferenceon Dependable Systems and NetworksWorkshops (DSN-W), pages 242–245.
IEEE, 2016.

[7] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. On Scalability of Software- Defined Networking. IEEE Communications
Magazine, 51(2):136–141, 2013.

[8] SethGilbertandNancyLynch.Brewer’sConjectureandtheFeasibilityofConsistent,Available, Partition-Tolerant Web Services. ACM SIGACT News,
33(2), 2002.

[9] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Sub- baiah Venkata, JimWanderer, Junlan Zhou, andMin
Zhu. B4: Experience with a globally- deployed softwaredefined WAN. ACM SIGCOMM Computer CommunicationReview, 43(4):3–14, 2013.

[10] Song Huang, Zhiang Deng, and Song Fu. Quantifying entity criticality for fault impact analysis and dependability enhancement in software-
defined networks. In Proceedings of the IEEE 35th International PerformanceComputing and Communications Conference (IPCCC), pages 1–8.

[11] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski, Justin Reynolds, and Casey Rosenthal. Chaos Engineering. IEEE
Software, 33(3):35–41, 2016.

Thanks!

Ugo	Giordano 22

