

PhD	in Information	Technology	and	Electrical	Engineering	

Università	degli	Studi	di	Napoli	Federico	II

	

PhD	Student:	Ugo	Giordano	
XXIX	Cycle		

Training	and	Research	Activities	Report	–	Third	Year	

	

Tutor:	Prof.	Stefano	Russo	

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 2

1. Information

PhD Student: Ugo Giordano 	
MS title: Computer Engineering – University of Naples Federico II 	
PhD cycle: XXIX – ITEE – University of Naples Federico II 	
Fellowship: Projects "SVEVIA" and "DISPLAY" of the "COSMIC" public-private laboratory
(PON02_00669)
 Tutor: Prof. Stefano Russo

2. Study and Training activities

a. Courses

b. Seminars and other

Lecture/Activity Type Professor Date h CFU

Project Management per la Ricerca Ad hoc
module Guido Capaldo 20/03/15 1

5 3

Models, methods and software for
Optimization

Ad hoc
module

Antonio Sforza/Claudio
Sterle

23-25/03-
04/15

1
8 4

English Language Course Ad hoc
module Geraint Thomas - - 6

Sistemi Real Time Specialistic
Module Marcello Cinque - - 6

Dependability of Computer Systems Specialistic
Module Cotroneo Domenico - - 6

Total 25

Lecture/Activity Type Professor Date h CFU

Reliability of electronic power devices
And modules Seminar Alberto Castellazzi 24-

26/03/15 6 1.2

The Memories of Tomorrow: Technology,
Design, Test, and Dependability Seminar Elena Ioana Vatajelu 24/04/15 3 0.6

Design and writing scientific manuscripts for
publication in English language scholarly
journals, and related topics

Seminar Barnet Parker 15-
17/06/15 12 3

Beyond the data: how to achieve actionable
insights with machine learning Seminar Matteo Santoro 10/11/15 2 0.3

Winter School: securing Critical Infrastructures Doctoral
School - 17-

24/01/16 36 7.2

Adversarial Testing of Protocol
Implementations Seminar Cristina Nita Notaru 23/02/16 2 0.4

Programmable network conjunction Seminar Roberto Bifulco 26/02/16 2 0.4
Bell Labs seminar: the future of Network
Technologies Seminar - 28-

29/04/16 4 0.8

Total 25

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 3

3. Research Activities

Title: In-production continuous testing for future Telco Cloud

3.1 SDN: toward the softwarization of future networks

Computer networks are nowadays at the basis of most critical infrastructures, and of many services
we access in our daily activities - be they business, consumer, social or private. Software Defined
Networking (SDN) has emerged in the very last few years - from the initial work done at University
of California at Berkeley and Stanford University in 2008 - as a paradigm capable of providing new
ways to design, build and operate networks. This is due to the key concept underlying it, namely the
separation of the network control logic (the so-called control plane) from the underlying equipment
(such as routers and switches) that forward and transport the traffic (the data plane) [1].
Thanks to the clear separation of the two abstraction levels - the logic level, corresponding to the
control plane, and the physical one, i.e. the data plane - SDN is claimed, and by many experts
strongly believed, to be about to introduce a big revolution in computer networking [2]. Along with
Network Function Virtualization (NFV), SDN is expected to have a positive impact on network
management costs [3]. Indeed, the logical level may host the network control logic in a
programmable and highly flexible way: advanced network services become software defined,
supporting much easier enforcement of networking policies, security mechanisms, reconfigurability
and evolution than in current computer networks.
The SDN flexibility is due to the separation of concerns between network configuration and policies
definition and lower-level equipment for traffic switching and routing, a direct consequence of the
separation of abstraction layers. The many advantages promised by SDN in engineering and
managing computer networks and in operating their services are very attractive for network
operators and Internet Services Providers (ISP). Network operation and management are
challenging, and providers face big issues in configuring large networks, enforcing desired policies,
and evolving to new technologies - all in a very dynamic environment [4]. This is easily
comprehensible thinking, for instance, at the huge difficulties that major technological changes
encounter to be applied in large networks. The transition from the Internet network protocols IPV4 to
IPV6 is just an example: started about a decade ago, it is probably still far to be completed. And it
has to be considered that protocols, which are at the heart of computer networks, are basic blocks
from the point of view of the highly demanding modern and future fixed and mobile applications and
services.
According to Allied Market Research, the SDN market is expected to reach $132 billion by 2022 [5].
Players in this market include telecommunication operators, ISPs, cloud and data center providers,
and equipment’s manufacturers. Beside the decoupling of service, software and hardware
technology innovations in networking, there is probably a fundamental reason for such big
expectation raised in the networking industry. The history of major advances in computer science
and engineering is a history of raising the level of abstraction. This is true for instance for
programming languages (from low- to high-level languages), for operating systems and middleware
technologies, for software design (up to modern model- driven techniques) [6]. Abstraction and
separation of concerns are fundamental engineering principles, which in the case of SDN may well
support its wide spread.
The logical entity hosting software-defined core network services in the control plane (e.g. routing,
authentication, discovery) is typically known in the literature as SDN controller (or simply controller).
Very recently, the concept of controller has evolved to that of network operating system (NOS), an
operating system - which can possibly run on commodity hardware - specifically providing an
execution environment for network management applications, through programmable network
functions. In the logical SDN architecture, the controller is below the application layer1, and atop the
data plane, that it controls en- acting the policies and the services required by applications. The
separation of the planes is realized by means of well-defined application programming interfaces
(API) between them. Relevant examples of SDN controllers are NOX [7], Beacon [8], OpenDaylight
[9] and ONOSTM [10], while probably the most widely known API is OpenFlow [11].

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 4

3.2 Motivations and contributions

The SDN controller is a logically centralized entity. Scalability, performance and reliability
requirements demand however for its engineering in a distributed manner. This raises advanced
challenges in achieving failure resilience, meant as the ability to maintain an acceptable level of
service even in presence of failures. This in fact depends not only on fault tolerance in the data
plane, as in traditional networks, but also on the high resilience of the control functions, logically
centralized yet actually distributed.
As controllers’ technology develops and they progressively become mature for the market, the need
to engineer and to assess SDN solutions’ compliance with non functional requirements - such as
scalability, high availability, fault tolerance and high reliability - becomes more compelling. The in-
production assessment of the failure resilience of SDN controllers is the focus of my research
activity during the third year. The goal is to devise an approach to evaluate the extent to which a
network controller’s mechanisms are able to react to failure conditions, so as to ultimately satisfy non
functional requirements, especially availability, reliability and fault tolerance.

The literature on SDN resilience assessment is still at the beginning. The research activity aims to
contribute to the advancement in testing and evaluation of SDN resilience, trying to go beyond what
can be achieved by means of “traditional” software analysis and testing techniques.
Indeed, in academic research it is a common practice to evaluate algorithmic design choices by
modeling or simulation without actual implementations, while in the industry, testing is typically used
to evaluate the design and implementation of a system. However, an algorithmic component could
not guarantee the proper operation of the whole system when other components affect the overall
behaviour. This is especially true with the increasing complexity of softwarized networks, due to
which troubleshooting in operation is expected to become more complex. Modeling and simulation
may be insufficient to unveil design defects, and implementation defects are sometimes not unveiled
by network testing. Even when in principle defects can be made manifest through testing, it may be
very hard and time consuming to identify test scenarios able to reproduce potential failures.
The vision we embrace is that it is an important goal in the engineering of SDNs to be able to
perform testing and assessment not only in emulated conditions before release and deployment, but
also in-production, when the system is under real operating conditions. This vision is somehow
inspired by Netflix’s Chaos Engineering approach [12]. Companies like Netflix providing services
over the Internet “push new code into production and modify configurations hundreds of times a day”
[12]. Netflix was probably the first advocating the need for “injecting failures into the production
system to improve reliability”.
Within this vision, the aim of this research activity is pursued through the use of software failure
injection, which serves to evaluate a system behaviour under (possibly unforeseen) failure
conditions. Differently from software fault injection [13] - a nowadays consolidated form of testing -
failure injection focuses on deliberately introducing failures in the components of the system under
assessment, or in their execution environment, under real or emulated load conditions, to evaluate
the ability of the system internal mechanisms to react to anomalous situations potentially occurring in
operation.

During my third year I proposes a software failure injection framework for in-production assessment
of the effectiveness of the failure detection and mitigation mechanisms provided by SDN controllers,
by reproducing specific failure scenarios. The framework consists of a methodology and a
configurable software infrastructure for failure injection in a SDN controller. The distributed
infrastructure encompasses - as main components - a workload generator, a failure injector, and
data collectors. The experimental evaluation is based on an open source industrial network
operating system.

In accomplishing my goal, I took benefit from a concrete experience in a very advanced industrial
research center in USA. Most of the work has actually been done during a period at the prestigious
Murray Hill NOKIA Bell Labs in New Providence, New Jersey. The need for controller’s resilience
assessment and the key ideas of the failure injector have been developed in this experience, in

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 5

the framework of NOKIA’s continuous and in-production testing strategy for the future
generation of network solutions. The experiments are based on the open source distributed
network operating system ONOSTM [10] [14], which is the very heart of the testbed. The ONOSTM
initiative is supported by several major industrial partners, including AT&T, Cisco, Ericsson, Google,
Huawei, NOKIA.

Finally, the main contributions of my third year research activity lie in:

• The use of failure injection to face the problem of evaluating the resilience of SDN

controllers, based on a failure model envisaged specifically for distributed controllers,
identifying representative failures to be injected;

• An injection methodology, conceived for both in-fabric and in-production assessment. The
methodology envisages the steps of (i) definition of the workload (according to the Intent
Based Networking model [15]) to emulate actual operating conditions of a controller; (ii)
workload generation and actual injection of failures, selected from the failure model, in the
emulated load conditions; (iii) data collection and assessment analysis. Clearly, workload
emulation (definition and generation) is not necessary for in-production tests, yet it is
important at the current state of the practice given the limited availability of SDN on-field
deployments;

• The design of a configurable distributed infrastructure to support the (optional) load
generation, failure injection and data collection tasks;

• The experimental evaluation, on a distributed testbed based on ONOS™.

3.3 A Vision for Future Telco

With the rapid growth and spread of devices demanding for network services, the nowadays mobile
broadband networks will need to be prepared to deliver much more data per user per day at lower
cost, despite the added challenge of unpredictable traffic patterns. Furthermore, with new services
and applications emerging continuously, devices will be connected much more often, and
consequently, a distinct competitive market advantage could be created by those network operators
capable to implement new services rapidly. To address these requirements, telecommunication
(Telco, for brevity) companies, such as NOKIA, are palling to migrate towards the so called “Telco
Cloud” (TC) [54,55,56], becoming a Telco Cloud Service Provider (TCSP). Telco Cloud is meant
to provide a dedicated cloud computing solution for network operator, to shift network functions away
from dedicated legacy hardware platforms into virtualized software components deployable on
general-purpose hardware. Such an approach, will increase the flexibility and agility of the networks
promoting innovative solutions for future network services, and will significantly lower the costs of
hardware appliances and management activities. Therefore, the virtualization of network services
plays a crucial rule in the Telco’s vision of future networks, however a “virtualizing everything”
approach has its drawback.

Software Defined Networking is a key area, along with Network Function Virtualization, to enable a
full Telco cloud ecosystem. However, the introduction of SDNs technologies has raised new
challenges in achieving network resiliency and fault tolerance due to the emergence of new failures
scenarios. Indeed, by decoupling the control plane from the data plane the overall network resilience
depends not only on the fault-tolerance in the data plane, as in the traditional networks, but also on
the high availability of the (logically) centralized control functions.
Moreover, given the issues related to a centralized solution, i.e., a single point of failure, and the
complexity of the control plane functionalities, the SDNs are by nature suitable to be implemented as
distributed system. Such an approach can lead to further threats to the network resilience, such as
inconsistent global network state shared between the SDN controllers as well as a network
partitioning.

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 6

Figure 1 In-production continuous testing in Telco Cloud, a vision of future networks.

In addition, compared to the legacy network appliances, the adoption of technologies for virtualizing
network services, introduce further threats to the networks reliability and resiliency, due to the known
failures which periodically occur in data center [57,58].
Consequently, in such an operational context the traditional software testing techniques appear
insufficient to evaluate the resilience and availability of a distributed SDN ecosystems. Indeed,
although these techniques are useful to validate specific system behaviours (e.g. the functional
testing), they are not suitable to identify failures that can affect complex distributed systems during
production hours [35]. On the other hand, a widely recognized effective way to assess fault-tolerance
mechanisms as well as to quantify system availability and/or reliability is failure injection. Unlike the
traditional testing techniques, failure injection allows to reproduce specific failure scenarios, such as
a latent communication, service failure, or hardware transient faults. Furthermore, if applied in a
controlled environment while the system is in production, the failure injection can lead to discover
problems in a timely manner, without affecting the customers, and providing “helpful insights to build
better detection, and mitigation mechanisms” to recover the system when real issues arise.
The vision we embrace is that along with the “softwarization” of network services, it is an important
goal in the engineering of such services, e.g. SDNs and NFVs, to be able to perform testing and
assessment not only before release and deployment in emulated conditions, but also in-production,
when the system is under real operating conditions. Figure 1 depicts an overview of such a vision,
where failure injection techniques are exploited to continuously assess the reliability and resilience of
the network services against widespread failure scenarios. This approach will provide continuous
feedback on the capabilities of the softwarized network services to survive failures, which is of
fundamental importance for improving the effectiveness of the system internal mechanisms to react
to anomalous situations potentially occurring in operation, while its services are regularly updated or
improved. To this end, failures need to be injected at different layers of the Telco infrastructure (see
Figure 1), namely: (i) at data-plane layer, to emulate faulty network appliances, e.g. by injecting Bit
Error Rate (BER) or packet latency and corruption at switchs’ port level; (ii) at infrastructure level, to
emulate faulty physical nodes or virtualized hosts, e.g. by emulating hardware failures or causing
resource starvation; and (iii) at control plane level, to emulate faulty network controllers, e.g. by
corrupting the status of a controller or its communication with other replicas or the data plane layer.
Within this vision, the research goal is to pursue through the use of software failure injection to
deliberately introduce failures in the components of the system under assessment, or in their
execution environment, under real or emulated load conditions, to evaluate the system behaviour
under (possibly unforeseen) disruptive conditions. Specifically, the focus is on the resilience of
control plane layer, and proposes a software failure injection framework for in-production

v Latency
v Packet

drop/corruption
v Switch hang
v CRC Errors

v Pre/Post FEC BER
v Optical

Impairments
v Fiber cuts

Data Plane
Failure Injection

v Controller Crash/Hang
v Controller Overload
v Controller’s Service Errors
v Consistency Errors
v Control-to-Data Plane

Communication Problems
v Network Partitioning (Split Brain)

Infrastructure
Failure Injection

Virtualized Layer Failures:
v Crash/Hang (VM/OS)
v Resources Starvation (VM/OS)
v I/O failures

Infrastructure Failures:
v Host Crash/Hang
v Hardware Failures
v Resource Overload
v Hypervisor Failures/Errors
v I/O failures

Control Plane
Failure Injection

In-Production Continuous Testing for Future Telco Cloud

Fa
ilu

re
 In

je
ct

io
n

A
PI

C
on

tin
uo

us
 M

on
ito

rin
g

A
PI

Network Operating System

SDN
Controller

Replica

SDN
Controller

Replica

SDN
Controller

Replica…

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 7

assessment of the effectiveness of the failure detection and mitigation mechanisms provided by SDN
controllers. The framework consists of a method- ology and a configurable software infrastructure for
failure injection in a SDN controller. The distributed infrastructure encompasses - as main
components - a workload generator, a failure injector, and data collectors. The experimental
evaluation is based on an open source industrial network operating system.
It has to be note that, although the failure model described in the next sections is meant to target
specifically the control plane ecosystem, some of the proposed failure modes may overlap with those
required to emulate faulty condition at infrastructure level (see Figure 1), e.g. a controller crash may
correspond with the crash of the virtual machine hosting such controller.

3.4 Failure injection testing: The Netflix approach

In providing a methodology to assess the resilience and the failover mechanisms of the SDN
platforms we take inspiration from the failure injection approach proposed by Netflix®. It is a
multinational company providing streaming and on demanded multimedia services to a wide range of
users around the world. In doing so, they engineered a very complex ecosystem according to a
“micro-services” architecture pattern, i.e. with multiple small and independent services working
together to fulfill a specific goal. This leads to a dynamic op- erational context, where services are
updated or added at runtime without ever interrupting the system, making it impractical, or even
impossible, to perform testing activities aimed to assess possible system’s deficiencies and identify
potential failure modes.
Consequently, a methodology has been proposed to find possible weaknesses in a production
system by observing its behaviour under the deliberate injection of failures in a controlled
experimental environment. Here, the key concept is represented by the execution of failure injection
experiments within a live production environment, which has three main advantages:

• It allows a better assessment of the system by verifying the correctness of its behaviour under

realistic production deployment and workload condition;
• It makes the system immune to possible failures;
• It helps preventing larger outages that can affect the overall system availability.

Such a methodology comes under the umbrella of the broader concept of “Chaos Engineering” [12],
[51] which is defined as the “discipline of experimenting on a distributed system in order to build
confidence in the system’s capability to withstand faulty conditions in production”. Specifically, this
discipline provides few practical principles meant to facilitate the testing activities to uncover system
weaknesses, namely:

• Definition of what is a normal system’s behaviour, i.e. the system “steady state”, considering

some measurable output of the system;  

• Build a control system and an experimental one, with the latter used for the failure injection
experiment;  

• Introduce disruptions on the experimental system to simulate real-world events, such as server
crashes, network failures etc.;  

• Compare the steady states of the experimental and control systems to find possible deviations
from the normal behaviour and build confidence on system resilience.  

Along with these chaos principles, Netflix proposes a Failure Injection Testing (FIT) platform to
automate [52, 53] the injection and monitoring of arbitrary failures scenarios into specific targeted
services or system subset, aiming to support the implementation of systems that are resilient to
failure.  	
Although inspired by the Netflix’s approach, the assessment methodology differs in several aspects:

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 8

(i) It targets distributed SDN platform to perform a resilience assessment under failure scenarios,

aiming to verify if such systems provide suitable failover mechanisms;
(ii) The framework reproduces failure scenarios which are representative for SDN ecosystems, e.g.

faulty communications between SDN controllers, or a faulty controller’s service;
(iii) It is meant to perform both offline, and in-production assessment, since the SDN technologies

are still in very early stages to be deployed in a real production environment;
(iv) It provides measurements which give valuable insights into the performance and resilience of

the SDNs.

3.5 Assessment methodology

During the third year of the PhD I propose a methodology and a framework to validate the reliability
and resilience of distributed SDN platforms. Specifically, the proposed methodology aims to
assess the effectiveness of the failure detection and mitigation mechanisms provided by the
SDNs by reproducing representative failure scenarios. To this end, I also designed a Failure
Injection infrastructure to deliberately inject failures in the SDN ecosystem limiting intrusiveness,
as much as possible.

The steps of the methodology are outlined in Fig. 2. There are three macro-steps:

• Definition of the workload, of the failure model, and of performance indicators; 
• Experiments’ execution; 
• Computation of metrics and reporting.

The execution of the failure injection experiments encompasses a number of tasks (Fig. 3). After the
definition of the failure model and the workload parameters (step 1 in Fig. 3), the experiment is set
up, instantiating controllers and data monitors on a distributed computing architecture (step 2). Then,
the workload is generated (step 3), so as to stimulate the SDN to bring it in a state where to inject a
failure selected from the failure model. During execution, a failure is injected (step 4), while the
system is monitored and data are collected (step 5). After execution, the testbed is cleaned up by
restoring the original status of the machines running the SDN controllers, and restoring the controller
instances, before starting the next experiment (step 6). 

It is worth emphasizing that the complexity of the environments where SDNs operate can lead to
situations that are difficult to replicate with the traditional software testing approaches [35]. For this
reason, the proposal has been conceived as a framework (method- ology and injection
infrastructure) to assess the resilience of the SDNs in production. The support infrastructure
(described in Section 4.3) has been designed as an extension of a generic SDN architecture, so as
to support the injections of failures even in a production environment, with the aim of continuous
testing.

Definition of
workload,

failure model
and indicators

Reporting
SDN

testbed
startup

Workload
generation

and
execution

SDN
testbed
cleanup

Failure Injection

Monitoring and data
collection

Failure injection experiments’ execution

Figure 2 Failure injection based SDN resilience assessment methodology.

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 9

Figure 3 The steps of a failure injection experiment in the proposed methodology.

3.6 The failure injection framework

Software-Defined Networks are typically engineered as distributed systems given the draw- backs of
centralized solutions in terms of scalability, performance, fault tolerance. This is true also for the
newest SDN implementations, such as ONOS® (Open Network Operating System) and ODL®
(OpenDaylight). For such a reason, we decided to adopt failures that belong to the most common
failure classes observed in distributed systems [35,60,61,62]. These failures are injected by merely
using API calls in a non-intrusive fashion.

Table 1 lists the failure classes considered in the proposed assessment methodology. Each class is
intended to mimic different types of failure scenarios at different levels of the software stack.
According to the level to which they apply, failures are classified in three main categories:

• System Failures: Relevant failure classes might affect the computational resources as well as
I/O operations (e.g., physical/virtual CPU, memory and disk) of a target node. The failures that
belong to this category are intended to evaluate the resilience of the SDNS to nodes crashes
and resources depletion of the machines hosting the SDN controller instances. The failure types
envisaged in this respect are system hang, starvation, outage and shutdown (at system and at
single CPU level), as well as disk and memory saturation. Furthermore, a single controller
instance might suffer from increased CPU utilization, for instance due to other compute-
intensive jobs running on the same target machine. The corresponding failure types to mimic
such a scenario are CPU or I/O burn. This class of failures are emulated by starting additional
jobs that deliberately consume CPU cycles and allocate memory areas aiming to cause
resource exhaustion, i.e. CPU and memory “hogs”.

• Network Failures: Network problems, such as link failures or latent communication, are among
the ones that have always been faced by distributed applications [60,63, 64]. The most common
consequence of these kind of failures is the partitioning of the network that split a system in
multiple disjoint, disconnected partitions. As a result, even if a system is designed to be
partition-tolerant, there are no guarantee that the modern distributed systems are able to cope
with partitioned, unreliable networks [61]. To reproduce such network failures, message
corruption or loss, partial or total network partitions as well as the permanent unavailability are
introduced into the network interfaces. Furthermore, even latent communications and bandwidth
limitation are emulated.

1a. definition of
workload

parameters

WORKLOAD

3. workload
generation and

execution

SDN TESTBED

CONTROLLER

2. SDN controllers startup
and functionality checks,

monitoring setup

INJECTOR

1b. definition of
failure model

M1 M2 MN---

4. failure
injection

METRICS
COMPUTATION

5. stop
monitoring

and
data collection

6. SDN
controllers

cleanup

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 10

• Service Failures: This class of failures aims of mimicking the malfunctioning that may occur in
the interaction between the SDN controller services. API calls may also be used to emulate a
faulty controller instance by shut it down or to mimic an anomalous service behaviour by forcing
the termination of specified system pro- cess. The corresponding failure types are emulated by
process kill, and controller or dependency stop. Furthermore, the state of the controller is
corrupted by a memory corruption, mimicking a hardware fault, or a programming error affecting
the controller’s memory.

 Table 1 Failure Model.

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 11

It has to be pointed out that future SDN controllers are likely to be engineered to be deployable also
in virtualized platforms, or in container technologies. This means that system failures should in
principle to be injectable also at the virtual machine (VM) or container level. However, as this is true
for any software system deployed in VM or containers (for instance, fault injection has been
proposed for virtualized network functions [65]), we intentionally did not include in our failure model
failures at the Hypervisor, host or container level, limiting it to failures whose injection allows to test
controllers wherever they are in execution.

Each failure in the model is triggered according to a specified injection time, that is the exact time
when the failure must be injected. In addition, in order to allow the design of more complex failure-
injection scenarios, the failure can be injected in three different modes, namely:

(i) transient mode: the failures are injected only once and removed after a specified amount of
time in order to emulate temporary failure;

(ii) intermittent mode: the failures are periodically injected and left in the system for a specified
amount of time to emulate temporary, but recurrent failure conditions;

(iii) permanent mode: the failures are injected and never removed from the system to emulate

persistent failure conditions.

3.7 The failure injection framework

The proposed assessment methodology has been complemented with a failure injection
framework, which is composed of a set of of interoperating sub-components, namely:

• The Workload Generator is in charge of generating the workload for the SUT. By means of the

Load Generator module, it equally distributes the requests towards the corresponding Load
Generator API, which instruments the core northbound interfaces of the controller instances.

• The Failure Injector is a ready-to-use component which can be integrated seamlessly into the
target system. It aims to inject different failure modes on the SUT. To this end, an instance of the
FI Manager module is deployed on each hosts of the SUT to actually perform the injection, while
the FI Controller module remotely coordinate the injection on all the target hosts.

• The Data Collector is in charge of collecting the data concerning to the SUT, namely the metrics

concerning to the controller instances as well as the machines hosting such instances. The
formers are collected by instrumenting the controller’s source code with the Event Data Collector
module, while the latter are collected by the Host Data Collector module. Then, these data are
permanently stored through the Data Collector Server module.

Figure 4 shows how the main components of the proposed SDN assessment framework are
integrated with the SUT and their interconnections. The next sub-sections describe in detail the
outlined framework’s components.

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 12

4. Products
a. Publications

Conference Paper

G.Carrozza, M.Cinque, U.Giordano, R.Pietrantuono, S.Russo,
Prioritizing Correction of Static Analysis Infringements for Cost-Effective Code
Sanitization, Proc. IEEE/ACM 2nd International Workshop on Software Engineering
Research and Industrial Practice (SER&IP), 37th “IEEE International Conference on
Software Engineering”,
Florence, Italy, May 17, 2015, pp. 25-31 DOI: 10.1109/SERIP.2015.13D, ISBN:
9781467370851, IEEE

b. Awards

Certificate of Appreciation from Nokia Bell Labs for the Summer ’16 Internship for the
contribution to the creation of the first version of “NetUnix”, a Nokia Network Operating
System.

Data	Collector	
Node	

OS

Data	
Collector	
Server

DBs

FI	Controller			
Node		

OS

FI-
controller

Pub-sub	
Broker	

Node	2	

OS

FI-
manager

SDN	Controller

Code	
Instrumentation

Collector
Agent

Load	
Generator	API

Host	
Agent

WG	Node				

OS

Load	Generator

Round	Robin	Req.	
Scheduler		

Node	1	

OS

FI-
manager

SDN	Controller

Code	
Instrumentation

Collector
Agent

Load	
Generator	API

Host	
Agent

Southbound	API

Northbound	API

Da
ta
	P
la
ne

	
Co

nt
ro
l	P

la
ne

	
Ap

pl
ica

tio
n	
La
ye
r

Device	Mastership

Controller	Synchronization	
Intent	Requests

Device	Backup

Injection	Requests
Data	Collection

Node	N	

FI-
manager

SDN	Controller

Code	
Instrumentation

Collector
Agent

Load	
Generator	API

Host	
Agent

OS

Global	Network	View	

Figure 4 Architecture of the SDN failure injection infrastructure.

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 13

5. Conference and Seminars

a. Conference
Winter School: “Securing Critical Infrastructures”, Cortina d’Ampezzo, from January 17th

to 24th, 2016

6. Activities abroad  
I have spent the entire third year of the PhD course abroad, from April 2016 to March 2017 as PhD
intern student at the prestigious Murray Hill NOKIA Bell Labs Bell Labs, a very advanced industrial
research center in USA. The collaboration has been focused on the assessment of the resilience
mechanisms provided by the nowadays SDN platform, such as ONOS™ and ODL™. The research
activity has brought to the implementation of a methodology and framework for assessing the
resilience of SDN platforms by means of failure injection in an in-production ecosystem. During this
period, I acquired very well knowledge about the SDN technologies, having the pleasure to work with
highly qualified people in the industry.

7. Tutorship

I have been teaching assistant for the course of Real-time Systems which is a course of the Master’s
degree in Computer Engineering, Department of Electrical Engineering and Information
Technologies at University of Naples Federico II, academic year 2015/2016.  

8. CS summary  

9. Bibliography

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

E
st

im
at

ed

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

S
u

m
m

ar
y

E
st

im
at

ed

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

S
u

m
m

ar
y

E
st

im
at

ed

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

b
im
o
n
th

S
u

m
m

ar
y

T
o

ta
l

C
h

ec
k

Modules 24 0 0 6 0 3 15 24 13 7 6 0 0 0 0 13 0 0 0 0 0 0 0 0 37 30-70
Seminars 6 0 0 3 0 2,7 2 7,7 8 1,8 3 0 0 0,3 8 13,1 0 0,8 0 0 0 0 0 0,8 22 10-30
Research 35 8 8 2 9 8 2 37 45 5 7 7 8 9 9 45 60 8 9 10 10 10 10 57 139 80-140

65 8 8 11 9 14 19 69 66 13,8 16 7 8 9,3 17 71,1 60 8,8 9 9 10 10 10 58 198 120-240

Credits year 1 Credits year 2 Credits year 3

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 14

[1] Diego Kreutz, Fernando M. V. Ramos, Paulo E. Verissimo, Christian E. Rothenberg, Siamak Azodolmolky,

and Steve Uhlig. Software-Defined Networking: A Comprehensive Survey. Pro- ceedings of the IEEE,
103(1):14–76, 2015.  

[2] BrunoA.A.Nunes,MarcMendonca,Xuan-NamNguyen,KatiaObraczka,andThierryTurletti. A survey of
Software-Defined Networking: Past, Present, and Future of Programmable Net- works. IEEE
Communications Surveys Tutorials, 16(3):1617–1634, 2014.  

[3] Enrique Hernandez-Valencia, Steven Izzo, and Beth Polonsky. How Will NFV/SDN Transform Service
Provider OpEx? IEEE Network, 29(3):60–67, 2015.  

[4] Hyojoon Kim and Nick Feamster. Improving network management with software defined net- working. IEEE
Communications Magazine, 51(2):114–119, 2013.  

[5] Allied Market Research. Global Software-Defined Networking Market: Opportunities and Fore- casts, 2015 -
2022. www.alliedmarketresearch.com/software-defined-networking-market (ac- cessed January 2017), 2016.
 

[6] Stefano Russo. Finding a way in the Model Driven jungle. In Proceedings of the 9th India Software
Engineering Conference (ISEC), pages 13–15. ACM, 2016.  

[7] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart ́ın Casado, Nick McKeown, and Scott Shenker.
NOX: towards an operating system for networks. ACM SIGCOMM Computer Communication Review,
38(13):105–110, 2008.  

[8] David Erickson. The Beacon OpenFlow Controller. In Proceeding of the 2nd Workshop on Hot Topics in
Software Defined Networking (HotSDN), pages 13–18. ACM, 2013.  

[9] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. OpenDaylight: Towards a Model- Driven SDN
Controller architecture. In Proceeding of IEEE 15th International Symposium on a World of Wireless,
Mobile and Multimedia Networks. IEEE, 2014.  

[10] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Brian
O’Connor Bob Lantz, Pavlin Radoslavov, William Snow, and Guru Parulkar. ONOS: towards an open,
distributed SDN OS. In Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking
(HotSDN), pages 1–6. ACM, 2014.  

[11] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling innovation in campus Networks. SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.  

[12] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski, Justin Reynolds, and Casey
Rosenthal. Chaos Engineering. IEEE Software, 33(3):35–41, 2016.  

[13] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing Dependability with Software Fault
Injection: A Survey. ACM Computing Surveys, 48(3):44:1–44:55, 2016.  

[14] ONOS Project. ONOS White Paper. http://onosproject.org/wp-content/uploads/2014/11/ Whitepaper-ONOS-
final.pdf (accessed January 2017), 2014.  

[15] ONOS Project. http://wiki.onosproject.org/display/onos/intent+framework. Website (ac- cessed January
2017).  

[16] Hamid Farhady, HyunYong Lee, and Akihiro Nakao. Software-defined networking: A survey. Computer
Networks, 81:79–95, 2015.  

[17] Open Networking Foundation. www.opennetworking.org. Website (accessed January 2017).  
[18] Dave Lenrow. Intent As The Common Interface to Network Resources. Presentation at the Intent Based

Network Summit 2015, Palo Alto, CA, USA. Available at www.ietf.org/mail-

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 15

archive/web/i2nsf/current/pdfEhAfL7kT9F.pdf (Accessed January 2017), 2015.  
[19] Open Networking Foundation. www.opennetworking.org/sdn-resources/openflow. Website (ac- cessed

January 2017).  
[20] ONOS Project. ONOS mission, http://onosproject.org/mission/. Webpage (accessed January 2017).  
[21] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Computing, 1(1):11–33,
2004.  

[22] Catello Di Martino, Veena Mendiratta, and Marina Thottan. Resiliency Challenges in Ac- celerating Carrier-
Grade Networks with SDN. In Proceedings of the 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 242–245. IEEE, 2016.  

[23] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. On Scalability of Software- Defined
Networking. IEEE Communications Magazine, 51(2):136–141, 2013.  

[24] SethGilbertandNancyLynch.Brewer’sConjectureandtheFeasibilityofConsistent,Available, Partition-Tolerant
Web Services. ACM SIGACT News, 33(2), 2002.  

[25] Carolyn R. Johnson, Yakov Kogan, Yonatan Levy, Farhad Saheban, and Percy Tarapore. Voip Reliability: A
Service Provider’s Perspective. IEEE Communications Magazine, 42(7):48–54, 2004.  

[26] Aditya Akella and Arvind Krishnamurthy. A Highly Available Software Defined Fabric. In Proceedings of
the 13th ACM Workshop on Hot Topics in Networks (HotNets), pages 1–7. ACM, 2014.  

[27] Jean-Francois Castet and Joseph H. Saleh. Survivability and Resiliency of Spacecraft and Space-Based
Networks: a Framework for Characterization and Analysis. In AIAA SPACE Conference. American Institute
of Aeronautics and Astronautics, 2008.  

[28] The ResiliNets Initiative. ResiliNets Wiki, https://wiki.ittc.ku.edu/resilinets wiki/index.php/
Definitions#Resilience. Website (accessed January 2017).  

[29] Paul Smith, David Hutchison, James P.G. Sterbenz, Marcus Sch ̈oller, Ali Fessi, Merkouris Karaliopoulos,
Chidung Lac, and Bernhard Plattner. Network resilience: a systematic approach. IEEE Communications
Magazine, 49(7):88–97, 2011.  

[30] Jean-Claude Laprie. Resilience for the scalability of dependability. In Proceedings of the 4th IEEE
International Symposium on Network Computing and Applications (NCA), pages 5–6. IEEE, 2005.  

[31] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet Demeester. Open- Flow: Meeting
carrier-grade recovery requirements. Computer Communications, 36(6):656–665, 2013.  

[32] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.  
[33] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of  distributed

systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.  
[34] The Netflix Tech Blog. Netflix Chaos Monkey 2.0. http://techblog.netflix.com/2016/10/netflix-  chaos-

monkey-upgraded.html (accessed January 2017), Oct. 2016.  
[35] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Sub- baiah Venkata,

Jim Wanderer, Junlan Zhou, and Min Zhu. B4: Experience with a globally- deployed software defined WAN.
ACM SIGCOMM Computer Communication Review, 43(4):3– 14, 2013.  

[36] Song Huang, Zhiang Deng, and Song Fu. Quantifying entity criticality for fault impact analysis and
dependability enhancement in software-defined networks. In Proceedings of the IEEE 35th International
Performance Computing and Communications Conference (IPCCC), pages 1–8. IEEE, 2016.  

[37] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement problem. In Proceedings of
the 1st Workshop on Hot Topics in Software Defined Networking (HotSDN), pages 7–12. ACM, 2012.  

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 16

[38] Paulo Fonseca, Ricardo Bennesby, and Edjard Mota. A Replication Component for Resilient OpenFlow-based
Networking. In Proceedings of the IEEE/IFIP Network Operations and Man- agement Symposium (NOMS).
IEEE, 2012.  

[39] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Distribyted systems, chapter The
primary-backup approach, pages 199–216. ACM Press/Addison-Wesley Publishing Co., 2nd edition, 1993.  

[40] Francisco J. Ros and Pedro M. Ruiz. Five Nines of Southbound Reliability in Software-Defined Networks. In
Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking (HotSDN), pages 31–36.
ACM, 2014.  

[41] Jie Hu, Chuang Lin, Xiangyang Li, and Jiwei Huang. Scalability of control planes for software defined
networks: Modeling and evaluation. In Proceedings of the IEEE 22nd International Symposium of Quality of
Service (IWQoS), pages 147–152. IEEE, 2014.  

[42] Murat Karakus and Arjan Durresi. A Scalability Metric for Control Planes in Software Defined Networks
(SDNs). In Proceedings of the IEEE 30th International Conference on Advanced Information Networking
and Applications (AINA), pages 282–289. IEEE, 2016.  

[43] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sherwood. On controller
performance in software-defined networks. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE). USENIX Association,
2012.  

[44] Yimeng Zhao, Luigi Iannone, and Michel Riguidel. On the performance of SDN controllers: A reality check.
In Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Network
(NFV-SDN), pages 79–85. IEEE, 2015.  

[45] Michael Jarschel, Frank Lehrieder, Zsolt Magyari, and Rastin Pries. A flexible OpenFlow- controller
benchmark. In Proceedings of the European Workshop on Software Defined Network- ing (EWSDN), pages
48–53. IEEE, 2012.  

[46] Amin Tootoonchian et al. Cbench: an Open-Flow Controller Benchmarker. https://github.
com/mininet/oflops/tree/master/cbench.  

[47] Keqiang He, Junaid Khalid, Sourav Das, Aaron Gember-Jacobson, Chaithan Prakash, Aditya Akella, Li Erran
Li, and Marina Thottan. Latency in Software Defined Networks: Measurements and Mitigation Techniques.
ACM SIGMETRICS Performance Evaluation Review, 43(1):435– 436, 2015.  

[48] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles Fabre, Jean-Claude Laprie, Eliane
Martins, and David Powell. Fault Injection for Dependability Validation: A Methodology and Some
Applications. IEEE Transactions on Software Engineering, 16(2):166– 182, 1990.  

[49] Roberto Natella, Domenico Cotroneo, Joao Duraes, and Henrique Madeira. On Fault Represen- tativeness of
Software Fault Injection. IEEE Transactions on Software Engineering, 39(1):80– 96, 2013.  

[50] Domenico Cotroneo, Luigi De Simone, Antonio Ken Iannillo, Anna Lanzaro, and Roberto Natella.
Dependability Evaluation and Benchmarking of Network Function Virtualization In- frastructures. In
Proceedings of the 1st IEEE Conference on Network Softwarization (NetSoft), pages 1–9. IEEE, 2015.  

[51] Principles of chaos engineering — The Netflix tech blog, 2015. [Online; accessed 31-January- 2017].  
[52] Fit: Failure injection testing — The Netflix tech blog, 2015. [Online; accessed 31-January-2017].  
[53] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali Basiri, and Lorin Hochstein. Automating

failure testing research at internet scale. In Proceedings of the Seventh ACM Symposium on Cloud
Computing, pages 17–28. ACM, 2016.  

[54] Jo ̃ao Soares, Carlos Gonc ̧alves, Bruno Parreira, Paulo Tavares, Jorge Carapinha, Jo ̃ao Paulo Barraca, Rui

Training and Research Activities Report – Second Year
PhD in Information Technology and Electrical Engineering – XXIX Cycle

Ugo Giordano

Università degli Studi di Napoli Federico II
 17

L Aguiar, and Susana Sargento. Toward a telco cloud environment for service functions. IEEE
Communications Magazine, 53(2):98–106, 2015.  

[55] Peter Bosch, Alessandro Duminuco, Fabio Pianese, and Thomas L Wood. Telco clouds and virtual telco:
Consolidation, convergence, and beyond. In Integrated Network Management (IM), 2011 IFIP/IEEE
International Symposium on, pages 982–988. IEEE, 2011.  

[56] Xu Zhiqun, Chen Duan, Hu Zhiyuan, and Sun Qunying. Emerging of telco cloud. China Communications,
10(6):79–85, 2013.  

[57] Amazon S3 Team et al. Amazon s3 availability event: July 20, 2008. Retrieved November, 15:2008, 2008.  
[58] Eric Bauer and Randee Adams. Reliability and availability of cloud computing. John Wiley & Sons, 2012.  
[59] Erhan Cinlar. Introduction to stochastic processes. Courier Corporation, 2013.  
[60] Ryan M Lefever, Michel Cukier, and William H Sanders. An experimental evaluation of cor- related network

partitions in the Coda distributed file system. In Proceedings of the 22nd International Symposium on
Reliable Distributed Systems (SRDS), pages 273–282. IEEE, 2003.  

[61] Cbench. Network faults in distributed systems. https://github.com/mininet/oflops/tree/ master/cbench, 2014.  
[62] Xiaoen Ju, Livio Soares, Kang G Shin, Kyung Dong Ryu, and Dilma Da Silva. On fault resilience of

OpenStack. In Proceedings of the 4th annual Symposium on Cloud Computing (SOCC). ACM, 2013.  
[63] Scott Dawson, Farnam Jahanian, Todd Mitton, and Teck-Lee Tung. Testing of fault-tolerant and real-time

distributed systems via protocol fault injection. In Proceedings of Annual Sym- posium on Fault Tolerant
Computing, pages 404–414. IEEE, 1996.  

[64] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Geetika Goel, Santonu Sarkar, and
Rajeshwari Ganesan. Characterization of operational failures from a business data process- ing SaaS
platform. In Companion Proceedings of the 36th International Conference on Software Engineering (ICSE),
pages 195–204. ACM, 2014.  

[65] Domenico Cotroneo, Luigi De Simone, Antonio Ken Iannillo, Anna Lanzaro, Roberto Natella, Jiang Fan, and
Wang Ping. Network Function Virtualization: Challenges and Directions for Reliability Assurance. In
Proceedings of the 25th IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), pages 37–42. IEEE, 2014.  

[66] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin
Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A Large- Scale System for Data
Center Network Latency Measurement and Analysis. ACM SIGCOMM Computer Communication Review,
45(4):139–152, 2015.  

[67] Devanandham Henry and Jose Emmanuel Ramirez-Marquez. Generic metrics and quantitative approaches for
system resilience as a function of time. Reliability Engineering & System Safety, 99:114–122, 2012.  

[68] Zwane Mwaikambo, Ashok Raj, Rusty Russell, Joel Schopp, and Srivatsa Vaddagiri. Linux kernel hotplug
CPU support. In Proceedings of the Linux Symposium - Volume Two, pages 467–480, 2004.  

[69] Jim Keniston, Ananth Mavinakayanahalli, Prasanna Panchamukhi, and Vara Prasad. Ptrace, Utrace, Uprobes:
Lightweight, Dynamic Tracing of User Apps. In Proceedings of the 2007 Linux Symposium, volume one,
pages 215–224, 2007.  

[70] Volkmar Sieh. Fault-injector using UNIX ptrace interface. Internal Report 11/93, IMMD3, Universit ̈at
Erlangen Nu ̈rnberg, 1993.  

