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1. Information  

PhD Student: Ugo Giordano 	
MS title: Computer Engineering – University of Naples Federico II 	
PhD cycle: XXIX – ITEE – University of Naples Federico II 	
Fellowship: Projects "SVEVIA" and "DISPLAY" of the "COSMIC" public-private laboratory 
(PON02_00669) 
 Tutor: Prof. Stefano Russo  
 
 

2. Study and Training activities 

a. Courses 

 

b. Seminars and other 

 

Lecture/Activity Type Professor Date  h CFU 

Project Management per la Ricerca  Ad hoc 
module Guido Capaldo 20/03/15 1

5 3 

Models, methods and software for 
Optimization  

Ad hoc 
module 

Antonio Sforza/Claudio 
Sterle 

23-25/03- 
04/15 

1
8 4 

English Language Course  Ad hoc 
module Geraint Thomas - - 6 

Sistemi Real Time Specialistic 
Module Marcello Cinque - - 6 

Dependability of Computer Systems Specialistic 
Module Cotroneo Domenico - - 6 

Total      25 

Lecture/Activity Type Professor Date  h CFU 

Reliability of electronic power devices  
And modules   Seminar Alberto Castellazzi 24-

26/03/15 6 1.2 

The Memories of Tomorrow: Technology, 
Design, Test, and Dependability  Seminar Elena Ioana Vatajelu 24/04/15 3 0.6 

Design and writing scientific manuscripts for 
publication in English language scholarly 
journals, and related topics   

Seminar Barnet Parker 15-
17/06/15 12 3 

Beyond the data: how to achieve actionable 
insights with machine learning Seminar Matteo Santoro 10/11/15 2 0.3 

Winter School: securing Critical Infrastructures Doctoral 
School - 17-

24/01/16 36 7.2 

Adversarial Testing of Protocol 
Implementations  Seminar Cristina Nita Notaru 23/02/16 2 0.4 

Programmable network conjunction Seminar Roberto Bifulco 26/02/16 2 0.4 
Bell Labs seminar: the future of Network 
Technologies Seminar - 28-

29/04/16 4 0.8 

Total      25 
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3. Research Activities   

Title: In-production continuous testing for future Telco Cloud 

3.1 SDN: toward the softwarization of future networks  
 
Computer networks are nowadays at the basis of most critical infrastructures, and of many services 
we access in our daily activities - be they business, consumer, social or private. Software Defined 
Networking (SDN) has emerged in the very last few years - from the initial work done at University 
of California at Berkeley and Stanford University in 2008 - as a paradigm capable of providing new 
ways to design, build and operate networks. This is due to the key concept underlying it, namely the 
separation of the network control logic (the so-called control plane) from the underlying equipment 
(such as routers and switches) that forward and transport the traffic (the data plane) [1].  
Thanks to the clear separation of the two abstraction levels - the logic level, corresponding to the 
control plane, and the physical one, i.e. the data plane - SDN is claimed, and by many experts 
strongly believed, to be about to introduce a big revolution in computer networking [2]. Along with 
Network Function Virtualization (NFV), SDN is expected to have a positive impact on network 
management costs [3]. Indeed, the logical level may host the network control logic in a 
programmable and highly flexible way: advanced network services become software defined, 
supporting much easier enforcement of networking policies, security mechanisms, reconfigurability 
and evolution than in current computer networks.  
The SDN flexibility is due to the separation of concerns between network configuration and policies 
definition and lower-level equipment for traffic switching and routing, a direct consequence of the 
separation of abstraction layers. The many advantages promised by SDN in engineering and 
managing computer networks and in operating their services are very attractive for network 
operators and Internet Services Providers (ISP). Network operation and management are 
challenging, and providers face big issues in configuring large networks, enforcing desired policies, 
and evolving to new technologies - all in a very dynamic environment [4]. This is easily 
comprehensible thinking, for instance, at the huge difficulties that major technological changes 
encounter to be applied in large networks. The transition from the Internet network protocols IPV4 to 
IPV6 is just an example: started about a decade ago, it is probably still far to be completed. And it 
has to be considered that protocols, which are at the heart of computer networks, are basic blocks 
from the point of view of the highly demanding modern and future fixed and mobile applications and 
services.  
According to Allied Market Research, the SDN market is expected to reach $132 billion by 2022 [5]. 
Players in this market include telecommunication operators, ISPs, cloud and data center providers, 
and equipment’s manufacturers. Beside the decoupling of service, software and hardware 
technology innovations in networking, there is probably a fundamental reason for such big 
expectation raised in the networking industry. The history of major advances in computer science 
and engineering is a history of raising the level of abstraction. This is true for instance for 
programming languages (from low- to high-level languages), for operating systems and middleware 
technologies, for software design (up to modern model- driven techniques) [6]. Abstraction and 
separation of concerns are fundamental engineering principles, which in the case of SDN may well 
support its wide spread.  
The logical entity hosting software-defined core network services in the control plane (e.g. routing, 
authentication, discovery) is typically known in the literature as SDN controller (or simply controller). 
Very recently, the concept of controller has evolved to that of network operating system (NOS), an 
operating system - which can possibly run on commodity hardware - specifically providing an 
execution environment for network management applications, through programmable network 
functions. In the logical SDN architecture, the controller is below the application layer1, and atop the 
data plane, that it controls en- acting the policies and the services required by applications. The 
separation of the planes is realized by means of well-defined application programming interfaces 
(API) between them. Relevant examples of SDN controllers are NOX [7], Beacon [8], OpenDaylight 
[9] and ONOSTM [10], while probably the most widely known API is OpenFlow [11].  
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3.2 Motivations and contributions  
 
The SDN controller is a logically centralized entity. Scalability, performance and reliability 
requirements demand however for its engineering in a distributed manner. This raises advanced 
challenges in achieving failure resilience, meant as the ability to maintain an acceptable level of 
service even in presence of failures. This in fact depends not only on fault tolerance in the data 
plane, as in traditional networks, but also on the high resilience of the control functions, logically 
centralized yet actually distributed.  
As controllers’ technology develops and they progressively become mature for the market, the need 
to engineer and to assess SDN solutions’ compliance with non functional requirements - such as 
scalability, high availability, fault tolerance and high reliability - becomes more compelling. The in-
production assessment of the failure resilience of SDN controllers is the focus of my research 
activity during the third year. The goal is to devise an approach to evaluate the extent to which a 
network controller’s mechanisms are able to react to failure conditions, so as to ultimately satisfy non 
functional requirements, especially availability, reliability and fault tolerance.  
 
The literature on SDN resilience assessment is still at the beginning. The research activity aims to 
contribute to the advancement in testing and evaluation of SDN resilience, trying to go beyond what 
can be achieved by means of “traditional” software analysis and testing techniques.  
Indeed, in academic research it is a common practice to evaluate algorithmic design choices by 
modeling or simulation without actual implementations, while in the industry, testing is typically used 
to evaluate the design and implementation of a system. However, an algorithmic component could 
not guarantee the proper operation of the whole system when other components affect the overall 
behaviour. This is especially true with the increasing complexity of softwarized networks, due to 
which troubleshooting in operation is expected to become more complex. Modeling and simulation 
may be insufficient to unveil design defects, and implementation defects are sometimes not unveiled 
by network testing. Even when in principle defects can be made manifest through testing, it may be 
very hard and time consuming to identify test scenarios able to reproduce potential failures.  
The vision we embrace is that it is an important goal in the engineering of SDNs to be able to 
perform testing and assessment not only in emulated conditions before release and deployment, but 
also in-production, when the system is under real operating conditions. This vision is somehow 
inspired by Netflix’s Chaos Engineering approach [12]. Companies like Netflix providing services 
over the Internet “push new code into production and modify configurations hundreds of times a day” 
[12]. Netflix was probably the first advocating the need for “injecting failures into the production 
system to improve reliability”.  
Within this vision, the aim of this research activity is pursued through the use of software failure 
injection, which serves to evaluate a system behaviour under (possibly unforeseen) failure 
conditions. Differently from software fault injection [13] - a nowadays consolidated form of testing - 
failure injection focuses on deliberately introducing failures in the components of the system under 
assessment, or in their execution environment, under real or emulated load conditions, to evaluate 
the ability of the system internal mechanisms to react to anomalous situations potentially occurring in 
operation.  
 
During my third year I proposes a software failure injection framework for in-production assessment 
of the effectiveness of the failure detection and mitigation mechanisms provided by SDN controllers, 
by reproducing specific failure scenarios. The framework consists of a methodology and a 
configurable software infrastructure for failure injection in a SDN controller. The distributed 
infrastructure encompasses - as main components - a workload generator, a failure injector, and 
data collectors. The experimental evaluation is based on an open source industrial network 
operating system.  
 
In accomplishing my goal, I took benefit from a concrete experience in a very advanced industrial 
research center in USA. Most of the work has actually been done during a period at the prestigious 
Murray Hill NOKIA Bell Labs in New Providence, New Jersey. The need for controller’s resilience 
assessment and the key ideas of the failure injector have been developed in this experience, in 
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the framework of NOKIA’s continuous and in-production testing strategy for the future 
generation of network solutions. The experiments are based on the open source distributed 
network operating system ONOSTM [10] [14], which is the very heart of the testbed. The ONOSTM 
initiative is supported by several major industrial partners, including AT&T, Cisco, Ericsson, Google, 
Huawei, NOKIA.  
 
Finally, the main contributions of my third year research activity lie in: 

 
• The use of failure injection to face the problem of evaluating the resilience of SDN 

controllers, based on a failure model envisaged specifically for distributed controllers, 
identifying representative failures to be injected;  

• An injection methodology, conceived for both in-fabric and in-production assessment. The 
methodology envisages the steps of (i) definition of the workload (according to the Intent 
Based Networking model [15]) to emulate actual operating conditions of a controller; (ii) 
workload generation and actual injection of failures, selected from the failure model, in the 
emulated load conditions; (iii) data collection and assessment analysis. Clearly, workload 
emulation (definition and generation) is not necessary for in-production tests, yet it is 
important at the current state of the practice given the limited availability of SDN on-field 
deployments;  

• The design of a configurable distributed infrastructure to support the (optional) load 
generation, failure injection and data collection tasks;  

• The experimental evaluation, on a distributed testbed based on ONOS™.  
 

3.3 A Vision for Future Telco 
 
With the rapid growth and spread of devices demanding for network services, the nowadays mobile 
broadband networks will need to be prepared to deliver much more data per user per day at lower 
cost, despite the added challenge of unpredictable traffic patterns. Furthermore, with new services 
and applications emerging continuously, devices will be connected much more often, and 
consequently, a distinct competitive market advantage could be created by those network operators 
capable to implement new services rapidly.  To address these requirements, telecommunication 
(Telco, for brevity) companies, such as NOKIA, are palling to migrate towards the so called “Telco 
Cloud” (TC) [54,55,56], becoming a Telco Cloud Service Provider (TCSP). Telco Cloud is meant 
to provide a dedicated cloud computing solution for network operator, to shift network functions away 
from dedicated legacy hardware platforms into virtualized software components deployable on 
general-purpose hardware. Such an approach, will increase the flexibility and agility of the networks 
promoting innovative solutions for future network services, and will significantly lower the costs of 
hardware appliances and management activities. Therefore, the virtualization of network services 
plays a crucial rule in the Telco’s vision of future networks, however a “virtualizing everything” 
approach has its drawback.  
 
Software Defined Networking is a key area, along with Network Function Virtualization, to enable a 
full Telco cloud ecosystem. However, the introduction of SDNs technologies has raised new 
challenges in achieving network resiliency and fault tolerance due to the emergence of new failures 
scenarios. Indeed, by decoupling the control plane from the data plane the overall network resilience 
depends not only on the fault-tolerance in the data plane, as in the traditional networks, but also on 
the high availability of the (logically) centralized control functions.  
Moreover, given the issues related to a centralized solution, i.e., a single point of failure, and the 
complexity of the control plane functionalities, the SDNs are by nature suitable to be implemented as 
distributed system. Such an approach can lead to further threats to the network resilience, such as 
inconsistent global network state shared between the SDN controllers as well as a network 
partitioning.  
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Figure 1 In-production continuous testing in Telco Cloud, a vision of future networks. 

 
 
In addition, compared to the legacy network appliances, the adoption of technologies for virtualizing 
network services, introduce further threats to the networks reliability and resiliency, due to the known 
failures which periodically occur in data center [57,58].  
Consequently, in such an operational context the traditional software testing techniques appear 
insufficient to evaluate the resilience and availability of a distributed SDN ecosystems. Indeed, 
although these techniques are useful to validate specific system behaviours (e.g. the functional 
testing), they are not suitable to identify failures that can affect complex distributed systems during 
production hours [35]. On the other hand, a widely recognized effective way to assess fault-tolerance 
mechanisms as well as to quantify system availability and/or reliability is failure injection. Unlike the 
traditional testing techniques, failure injection allows to reproduce specific failure scenarios, such as 
a latent communication, service failure, or hardware transient faults. Furthermore, if applied in a 
controlled environment while the system is in production, the failure injection can lead to discover 
problems in a timely manner, without affecting the customers, and providing “helpful insights to build 
better detection, and mitigation mechanisms” to recover the system when real issues arise.  
The vision we embrace is that along with the “softwarization” of network services, it is an important 
goal in the engineering of such services, e.g. SDNs and NFVs, to be able to perform testing and 
assessment not only before release and deployment in emulated conditions, but also in-production, 
when the system is under real operating conditions. Figure 1 depicts an overview of such a vision, 
where failure injection techniques are exploited to continuously assess the reliability and resilience of 
the network services against widespread failure scenarios. This approach will provide continuous 
feedback on the capabilities of the softwarized network services to survive failures, which is of 
fundamental importance for improving the effectiveness of the system internal mechanisms to react 
to anomalous situations potentially occurring in operation, while its services are regularly updated or 
improved. To this end, failures need to be injected at different layers of the Telco infrastructure (see 
Figure 1), namely: (i) at data-plane layer, to emulate faulty network appliances, e.g. by injecting Bit 
Error Rate (BER) or packet latency and corruption at switchs’ port level; (ii) at infrastructure level, to 
emulate faulty physical nodes or virtualized hosts, e.g. by emulating hardware failures or causing 
resource starvation; and (iii) at control plane level, to emulate faulty network controllers, e.g. by 
corrupting the status of a controller or its communication with other replicas or the data plane layer. 
Within this vision, the research goal is to pursue through the use of software failure injection to 
deliberately introduce failures in the components of the system under assessment, or in their 
execution environment, under real or emulated load conditions, to evaluate the system behaviour 
under (possibly unforeseen) disruptive conditions. Specifically, the focus is on the resilience of 
control plane layer, and proposes a software failure injection framework for in-production 
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assessment of the effectiveness of the failure detection and mitigation mechanisms provided by SDN 
controllers. The framework consists of a method- ology and a configurable software infrastructure for 
failure injection in a SDN controller. The distributed infrastructure encompasses - as main 
components - a workload generator, a failure injector, and data collectors. The experimental 
evaluation is based on an open source industrial network operating system.  
It has to be note that, although the failure model described in the next sections is meant to target 
specifically the control plane ecosystem, some of the proposed failure modes may overlap with those 
required to emulate faulty condition at infrastructure level (see Figure 1), e.g. a controller crash may 
correspond with the crash of the virtual machine hosting such controller.  
 

3.4 Failure injection testing: The Netflix approach 

 
In providing a methodology to assess the resilience and the failover mechanisms of the SDN 
platforms we take inspiration from the failure injection approach proposed by Netflix®. It is a 
multinational company providing streaming and on demanded multimedia services to a wide range of 
users around the world. In doing so, they engineered a very complex ecosystem according to a 
“micro-services” architecture pattern, i.e. with multiple small and independent services working 
together to fulfill a specific goal. This leads to a dynamic op- erational context, where services are 
updated or added at runtime without ever interrupting the system, making it impractical, or even 
impossible, to perform testing activities aimed to assess possible system’s deficiencies and identify 
potential failure modes.  
Consequently, a methodology has been proposed to find possible weaknesses in a production 
system by observing its behaviour under the deliberate injection of failures in a controlled 
experimental environment. Here, the key concept is represented by the execution of failure injection 
experiments within a live production environment, which has three main advantages:  
 
• It allows a better assessment of the system by verifying the correctness of its behaviour under 

realistic production deployment and workload condition;  
• It makes the system immune to possible failures;  
• It helps preventing larger outages that can affect the overall system availability.  
 
Such a methodology comes under the umbrella of the broader concept of “Chaos Engineering” [12], 
[51] which is defined as the “discipline of experimenting on a distributed system in order to build 
confidence in the system’s capability to withstand faulty conditions in production”. Specifically, this 
discipline provides few practical principles meant to facilitate the testing activities to uncover system 
weaknesses, namely:  
 
• Definition of what is a normal system’s behaviour, i.e. the system “steady state”, considering 

some measurable output of the system;    
 

• Build a control system and an experimental one, with the latter used for the failure injection 
experiment;   
 

• Introduce disruptions on the experimental system to simulate real-world events, such as server 
crashes, network failures etc.;   
 

• Compare the steady states of the experimental and control systems to find possible deviations 
from the normal behaviour and build confidence on system resilience.   

 
Along with these chaos principles, Netflix proposes a Failure Injection Testing (FIT) platform to 
automate [52, 53] the injection and monitoring of arbitrary failures scenarios into specific targeted 
services or system subset, aiming to support the implementation of systems that are resilient to 
failure.  	
Although inspired by the Netflix’s approach, the assessment methodology differs in several aspects:  
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(i) It targets distributed SDN platform to perform a resilience assessment under failure scenarios, 

aiming to verify if such systems provide suitable failover mechanisms; 
(ii) The framework reproduces failure scenarios which are representative for SDN ecosystems, e.g. 

faulty communications between SDN controllers, or a faulty controller’s service; 
(iii) It is meant to perform both offline, and in-production assessment, since the SDN technologies 

are still in very early stages to be deployed in a real production environment; 
(iv) It provides measurements which give valuable insights into the performance and resilience of 

the SDNs. 
 

3.5 Assessment methodology 

During the third year of the PhD I propose a methodology and a framework to validate the reliability 
and resilience of distributed SDN platforms. Specifically, the proposed methodology aims to 
assess the effectiveness of the failure detection and mitigation mechanisms provided by the 
SDNs by reproducing representative failure scenarios. To this end, I also designed a Failure 
Injection infrastructure to deliberately inject failures in the SDN ecosystem limiting intrusiveness, 
as much as possible.  

The steps of the methodology are outlined in Fig. 2. There are three macro-steps:  

• Definition of the workload, of the failure model, and of performance indicators;  
• Experiments’ execution;  
• Computation of metrics and reporting.  

 

The execution of the failure injection experiments encompasses a number of tasks (Fig. 3). After the 
definition of the failure model and the workload parameters (step 1 in Fig. 3), the experiment is set 
up, instantiating controllers and data monitors on a distributed computing architecture (step 2). Then, 
the workload is generated (step 3), so as to stimulate the SDN to bring it in a state where to inject a 
failure selected from the failure model. During execution, a failure is injected (step 4), while the 
system is monitored and data are collected (step 5). After execution, the testbed is cleaned up by 
restoring the original status of the machines running the SDN controllers, and restoring the controller 
instances, before starting the next experiment (step 6).   

It is worth emphasizing that the complexity of the environments where SDNs operate can lead to 
situations that are difficult to replicate with the traditional software testing approaches [35]. For this 
reason, the proposal has been conceived as a framework (method- ology and injection 
infrastructure) to assess the resilience of the SDNs in production. The support infrastructure 
(described in Section 4.3) has been designed as an extension of a generic SDN architecture, so as 
to support the injections of failures even in a production environment, with the aim of continuous 
testing.  

Definition of 
workload, 

failure model 
and indicators

Reporting
SDN 

testbed
startup

Workload 
generation 

and 
execution

SDN 
testbed 
cleanup

Failure Injection

Monitoring and data 
collection

Failure injection experiments’ execution

Figure 2 Failure injection based SDN resilience assessment methodology. 
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Figure 3 The steps of a failure injection experiment in the proposed methodology. 

3.6 The failure injection framework  

Software-Defined Networks are typically engineered as distributed systems given the draw- backs of 
centralized solutions in terms of scalability, performance, fault tolerance. This is true also for the 
newest SDN implementations, such as ONOS® (Open Network Operating System) and ODL® 
(OpenDaylight). For such a reason, we decided to adopt failures that belong to the most common 
failure classes observed in distributed systems [35,60,61,62]. These failures are injected by merely 
using API calls in a non-intrusive fashion.  

Table 1 lists the failure classes considered in the proposed assessment methodology. Each class is 
intended to mimic different types of failure scenarios at different levels of the software stack. 
According to the level to which they apply, failures are classified in three main categories:  

• System Failures: Relevant failure classes might affect the computational resources as well as 
I/O operations (e.g., physical/virtual CPU, memory and disk) of a target node. The failures that 
belong to this category are intended to evaluate the resilience of the SDNS to nodes crashes 
and resources depletion of the machines hosting the SDN controller instances. The failure types 
envisaged in this respect are system hang, starvation, outage and shutdown (at system and at 
single CPU level), as well as disk and memory saturation. Furthermore, a single controller 
instance might suffer from increased CPU utilization, for instance due to other compute-
intensive jobs running on the same target machine. The corresponding failure types to mimic 
such a scenario are CPU or I/O burn. This class of failures are emulated by starting additional 
jobs that deliberately consume CPU cycles and allocate memory areas aiming to cause 
resource exhaustion, i.e. CPU and memory “hogs”.  
 

• Network Failures: Network problems, such as link failures or latent communication, are among 
the ones that have always been faced by distributed applications [60,63, 64]. The most common 
consequence of these kind of failures is the partitioning of the network that split a system in 
multiple disjoint, disconnected partitions. As a result, even if a system is designed to be 
partition-tolerant, there are no guarantee that the modern distributed systems are able to cope 
with partitioned, unreliable networks [61]. To reproduce such network failures, message 
corruption or loss, partial or total network partitions as well as the permanent unavailability are 
introduced into the network interfaces. Furthermore, even latent communications and bandwidth 
limitation are emulated.  

1a. definition of 
workload 

parameters

WORKLOAD

3. workload 
generation and 

execution

SDN TESTBED

CONTROLLER

2. SDN controllers startup 
and functionality checks, 

monitoring setup

INJECTOR

1b. definition of 
failure model

M1 M2 MN---

4. failure 
injection

METRICS 
COMPUTATION

5. stop 
monitoring 

and 
data collection

6. SDN 
controllers 

cleanup



Training and Research Activities Report – Second Year 
PhD in Information Technology and Electrical Engineering – XXIX Cycle 

Ugo Giordano 

 

Università degli Studi di Napoli Federico II 
 10 

• Service Failures: This class of failures aims of mimicking the malfunctioning that may occur in 
the interaction between the SDN controller services. API calls may also be used to emulate a 
faulty controller instance by shut it down or to mimic an anomalous service behaviour by forcing 
the termination of specified system pro- cess. The corresponding failure types are emulated by 
process kill, and controller or dependency stop. Furthermore, the state of the controller is 
corrupted by a memory corruption, mimicking a hardware fault, or a programming error affecting 
the controller’s memory.  

            Table 1 Failure Model. 
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It has to be pointed out that future SDN controllers are likely to be engineered to be deployable also 
in virtualized platforms, or in container technologies. This means that system failures should in 
principle to be injectable also at the virtual machine (VM) or container level. However, as this is true 
for any software system deployed in VM or containers (for instance, fault injection has been 
proposed for virtualized network functions [65]), we intentionally did not include in our failure model 
failures at the Hypervisor, host or container level, limiting it to failures whose injection allows to test 
controllers wherever they are in execution.  

Each failure in the model is triggered according to a specified injection time, that is the exact time 
when the failure must be injected. In addition, in order to allow the design of more complex failure-
injection scenarios, the failure can be injected in three different modes, namely:  

(i) transient mode: the failures are injected only once and removed after a specified amount of 
time in order to emulate temporary failure;  
 

(ii) intermittent mode: the failures are periodically injected and left in the system for a specified 
amount of time to emulate temporary, but recurrent failure conditions;  

 
(iii) permanent mode: the failures are injected and never removed from the system to emulate 

persistent failure conditions.  
 
 

3.7 The failure injection framework  

 
The proposed assessment methodology has been complemented with a failure injection 
framework, which is composed of a set of of interoperating sub-components, namely:  
 
• The Workload Generator is in charge of generating the workload for the SUT. By means of the 

Load Generator module, it equally distributes the requests towards the corresponding Load 
Generator API, which instruments the core northbound interfaces of the controller instances.  
 

• The Failure Injector is a ready-to-use component which can be integrated seamlessly into the 
target system. It aims to inject different failure modes on the SUT. To this end, an instance of the 
FI Manager module is deployed on each hosts of the SUT to actually perform the injection, while 
the FI Controller module remotely coordinate the injection on all the target hosts.  

 
• The Data Collector is in charge of collecting the data concerning to the SUT, namely the metrics 

concerning to the controller instances as well as the machines hosting such instances. The 
formers are collected by instrumenting the controller’s source code with the Event Data Collector 
module, while the latter are collected by the Host Data Collector module. Then, these data are 
permanently stored through the Data Collector Server module.  

 
 

Figure 4 shows how the main components of the proposed SDN assessment framework are 
integrated with the SUT and their interconnections. The next sub-sections describe in detail the 
outlined framework’s components.  
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Prioritizing Correction of Static Analysis Infringements for Cost-Effective Code 
Sanitization, Proc. IEEE/ACM 2nd International Workshop on Software Engineering 
Research and Industrial Practice (SER&IP), 37th “IEEE International Conference on 
Software Engineering”,  
Florence, Italy, May 17, 2015, pp. 25-31 DOI: 10.1109/SERIP.2015.13D, ISBN: 
9781467370851, IEEE  
 

b. Awards  

Certificate of Appreciation from Nokia Bell Labs for the Summer ’16 Internship for the 
contribution to the creation of the first version of “NetUnix”, a Nokia Network Operating 
System. 
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Figure 4 Architecture of the SDN failure injection infrastructure. 
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5. Conference and Seminars 

 

a. Conference  
Winter School: “Securing Critical Infrastructures”, Cortina d’Ampezzo, from January 17th 

to 24th, 2016  
 
 

6. Activities abroad   
I have spent the entire third year of the PhD course abroad, from April 2016 to March 2017 as PhD 
intern student at the prestigious Murray Hill NOKIA Bell Labs Bell Labs, a very advanced industrial 
research center in USA. The collaboration has been focused on the assessment of the resilience 
mechanisms provided by the nowadays SDN platform, such as ONOS™ and ODL™. The research 
activity has brought to the implementation of a methodology and framework for assessing the 
resilience of SDN platforms by means of failure injection in an in-production ecosystem. During this 
period, I acquired very well knowledge about the SDN technologies, having the pleasure to work with 
highly qualified people in the industry.  
 

 
7. Tutorship  

I have been teaching assistant for the course of Real-time Systems which is a course of the Master’s 
degree in Computer Engineering, Department of Electrical Engineering and Information 
Technologies at University of Naples Federico II, academic year 2015/2016.   

 

8. CS summary  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