

# Daniele Gatti Tutor: Prof. Arpaia Pasquale XXXII Cycle - I year presentation

Low-cost transducer networks for real-time movement tracking and modelling in life-size immersive serious games



## Outline

- ✓ My Background
- ✓ Fellowship
- ✓ Problem
- ✓ Proposal
- ✓ Orientation estimation
- ✓ Products
- ✓ Next Year



## My background

- I received the MSc degree in Electronic Engineering (cum laude) from University of Naples, "Federico II".
- I work within "Electrical and Electronic Measurements" DIETI Group (building 3/A, 1<sup>st</sup> floor)



## Fellowship

My fellowship is financed by European Social Fund (ESF).

#### **Partners**









## Which is the problem?

The research concerns the use of low-cost transducers based on microcontrollers to define the motion of humans or objects in an immersive environment of augmented reality for serious games.





## State of the art

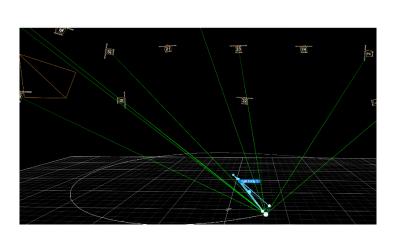
The common technologies in indoor localization are:

- Radio frequency
- Camera-based solution
- Infrared
- Ultrasonic












# High performance solution

Optitrack 6DOF real time IR tracking system.

- 1. <u>+</u>1 cm uncertainty.
- 2. 1 kHz bandwidth.
- 3. 5 user localization
- 4. High-cost \$ 15000 \*



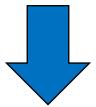






## Solution

Ultrasonic systems are an attractive solution in low-cost indoor applications, owing to their low power consumption, the availability of low-cost transceivers, and their work bandwidth, allowing cheap hardware and simple processing.


For this reasons, the ultrasonic technology is considered as a convenient solution for a low-cost accurate indoor positioning.



### Solution

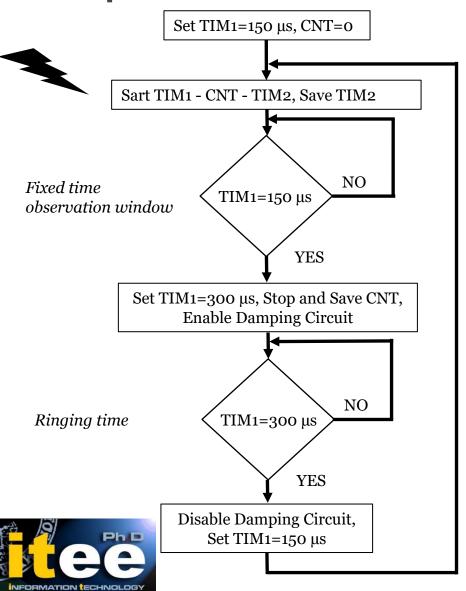
The localization problem is faced through two main steps: a Beacon-Target distance measurement and a localization algorithm.

Time Differential of Arrival measurements



Multilateration




## Proposal

Recognize different beacons by comparing the received signal with a threshold: when the signal is greater than the threshold, a counter is incremented. If the signal is observed in a fixed time window, the counter value (NTH) depends only on the time shape of the received signal in **transient phase**.

The beacons node are driven by a sinusoidal signal; thereby, if different signal frequencies are emitted by the beacons, the NTH counted at the receiving node is different.



# Proposal





**Beacons** 







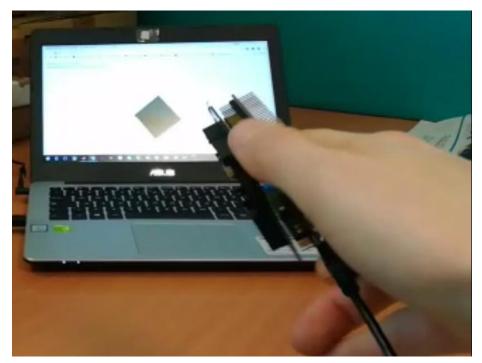
Target

Daniele Gatti

### Results

The prototype is tested in an area of 1.8 m x 2.0 m for four target different positions. Two synchronized emitting beacon nodes are positioned at the coordinate x1 = 0.5 m. The x RMS error is 1.90 cm, the y RMS error is 5.59 cm, the maximum of the error standard deviation is 0.4 cm.




| d <sub>1</sub><br>[m] | $d_2$ [m] | $ar{x}_{error}$ [cm] | $ar{y}_{error}$ [cm] | $\sigma ar{x}_{error}$ [cm] | $\sigma ar{y}_{error}$ [cm] |
|-----------------------|-----------|----------------------|----------------------|-----------------------------|-----------------------------|
| 2.22                  | 1.82      | 2.80                 | -6.9                 | 0.05                        | 0.1                         |
| 2.28                  | 2.00      | -2.3                 | 7.9                  | 0.1                         | 0.4                         |
| 2.00                  | 1.64      | -0.78                | 2.1                  | 0.06                        | 0.2                         |
| 2.23                  | 2.00      | -0.80                | 3.4                  | 0.09                        | 0.4                         |



### Orientation estimation

In STMicroelectrnics I implemented an 9DOF attitude and heading reference system using Madgwick filter on NUCLEO STM32F401RE microcontroller and ISK01A sensor platform.







Daniele Gatti

### **Products**

#### Conference Paper

- Leopoldo Angrisani, Pasquale Arpaia, and Daniele Gatti. "Analysis of localization technologies for indoor environment." IEEE International Workshop on Measurement and Networking (M&N), 2017.
- Leopoldo Angrisani, Pasquale Arpaia, and Daniele Gatti. "Fast beacon recognition for accurate ultrasonic indoor positioning." IEEE International Workshop on Measurement and Networking (M&N), 2017.





University of Napoli Federico II San Giovanni Complex

Naples, Italy September 27-29, 2017

# Next years...

#### Research activity

- 1. Using augmented reality in harsh environments for humanrobots cooperation at CERN.
- 2. Modeling of the motion and the synthesis of virtual agents to improve the human interaction in serious game.

#### Summary of credits

| Student: Daniele Gatti |           |              | Tutor: Pasquale Arpaia |                       |         |         |         |         |           |          | Cycle   | e XXX   | ΧII     |         |         |         |           |          |         |         |         |         |         |         |       |        |
|------------------------|-----------|--------------|------------------------|-----------------------|---------|---------|---------|---------|-----------|----------|---------|---------|---------|---------|---------|---------|-----------|----------|---------|---------|---------|---------|---------|---------|-------|--------|
| daniele.gatti@unina.it |           |              |                        | pasquale.arpaia@unina |         |         |         | na.it   |           |          |         |         |         |         |         |         |           |          |         |         |         |         |         |         |       |        |
|                        |           |              | Cr                     | edits                 | VASI    | - 1     |         |         |           |          | C       | redite  | s year  | . 2     |         |         |           |          | C       | redits  | Veal    | - 3     |         |         |       |        |
|                        |           | <del>-</del> | 7                      | m                     | 4       | ٠<br>س  | 9       |         |           | <b>—</b> | 8       | m       | 4       | ις.     | 9       |         |           | <b>—</b> | 8       | m       | 4       | ις.     | 9       |         |       |        |
|                        | Estimated | bimonth      | bimonth                | bimonth               | bimonth | bimonth | bimonth | Summary | Estimated | bimonth  | bimonth | bimonth | bimonth | bimonth | bimonth | Summary | Estimated | bimonth  | bimonth | bimonth | bimonth | bimonth | bimonth | Summary | Total | Check  |
| Modules                | 18        |              |                        | 9                     | 3       |         | 9       | 21      | 15        |          |         |         |         |         |         | 0       |           |          |         |         |         |         |         | 0       | 21    | 30-70  |
| Seminars               | 13        | 1            | 7                      |                       |         | 0       | 0.6     | 8.6     | 5         |          |         |         |         |         |         | 0       |           |          |         |         |         |         |         | 0       | 8.6   | 10-30  |
| Research               | 34        | 4.5          | 4.5                    | 5.4                   | 6.5     | 5.5     | 4       | 30      | 40        |          |         |         |         |         |         | 0       |           |          |         |         |         |         |         | 0       | 30    | 80-140 |
|                        | 65        | 5.5          | 12                     | 14                    | 9.5     | 5.5     | 14      | 60      | 60        | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 0         | 0        | 0       | 0       | 0       | 0       | 0       | 0       | 60    | 180    |



Thanks for your attention!!!

