

PhD in Information Technology and Electrical Engineering

Università degli Studi di Napoli Federico II

PhD Student: Luigi Gallo

XXXIV Cycle

Training and Research Activities Report - Third Year

Tutor: Prof. Alessio Botta

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Luigi Gallo

Template

- 1. Information
 - a. Name Surname, MS title University
 - b. XXIX Cycle-ITEE Università di Napoli Federico II
 - c. Fellowship type
 - d. Tutor
- 2. Study and Training activities
 - a. Courses
 - b. Seminars
 - c. External courses
- 3. Research activity
 - a. Title b. Study

 - c. Research descriptiond. Collaborations
- 4. Products
 - a. Publications
 - i. Books, Book Chapters, Journal papers, Conference papers (mark international products)
 - ii. List those in preparation
 - b. Patents
- 5. Conferences and Seminars
 - a. Details (Conference name, place, dates, number of papers)
 - b. Presentations made
- 6. Activity abroad
 - a. Details (Place, dates, number of papers, contact persons)
- 7. Tutorship
 - a. Type, subjects, hours

PhD in Information Technology and Electrical Engineering – XXXIV Cycle Luigi Gallo

1 - INFORMATION

Luigi Gallo

Computer Engineering

Università di Napoli Federico II

PhD in Information Technology and Electrical Engineering

Università di Napoli Federico II

No Fellowship

Tutor: Prof Alessio Botta

2 – STUDY AND TRAINING ACTIVITIES

The study and training part (of the third year) includes the following short courses and seminars.

Year	Seminar Title	Credits	Lecturer	Lecturer affiliation	Organization
3	AI4NETS-AI/ML for datacommunication Networks Tutorial	0.6	Dr. Pedro Casas	Austria Institute of Technology	Politecnico di Torino
3	"Images, Texts, Emojis and Geodata in Sentiment Analysis Pipeline"	0.3	Dr. Serena Pelosi	University of Salerno	University of Napoli Federico II
3	"Data Driven Transformation in WINDTRE through Managers voice	0.4	Marcello Savarese	WindTRE	University of Napoli Federico II
3	AI LEGAL: Artificial Intelligence for notary's sector – a case study	0.2	Salvatore Palange		University of Napoli Federico II
3	"Approaches to Graph Machine Learning"	0.2	Miroslav Cepek		University of Napoli Federico II

Università degli Studi di Napoli Federico II

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Luigi Gallo

3	"The coming revolution of Data driven Discovery (a fourth Methodological Paradigm of Science)"	0.3	Prof. Giuseppe Longo	University of Napoli Federico II	University Federico II	of	Napoli
3	"Distributional Semantics Methods: How Linguistic features can improve the semantic representation"	0.4	Alessandro Maisto	University of Salerno	University Federico II	of	Napoli
3	"5G: l'architettura, le applicazioni la rete di accesso radio"	0.4	Ing. Mollica Francesco	Vodafone	University Federico II	of	Napoli

Moreover, I attended the following internal courses and doctoral schools.

Year	Module Title	Туре	Credits	Lecturer	Organization				
3	"HOW TO BOOST YOUR PHD"	External module	3	Dr. Antigone Marino	University of Napol Federico II				
3	IMPRENDITORIALITA' ACCADEMICA	Ad hoc module	4	Prof. Pierluigi Ripa	University of Napol Federico II				

	Credits year 1								Credits year 2								Credits year 3									
		-	2	3	4	5	9			-	2	3	4	5	6			7	8	3	4	5	9			
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Total	Check
Modules	20	1,6	0	3	0	6	5	15,6	14	0	3	0	9	2,8	0	14,8	10	0	0	3	4	0	0	7	37,4	30-70
Seminars	5	0,4	0	0,4	1,5	0	0	2,3	6	0,4	0	1,6	2,7	4	1,4	10,1	7	1,3	0,4	0,7	0,4	0	0	2,8	15,2	10-30
Research	35	8	10	6,6	8,5	4	5	42,1	40	9,6	7	8,4	3,3	0,7	6,1	35,1	43	8,7	9,6	6,3	5,6	10	10	50,2	127,4	80-140
	60	10	10	10	10	10	10	60	60	10	10	10	15	7,5	7,5	60	60	10	10	10	10	10	10	60	180	180

3 – RESEARCH ACTIVITY

Analysis and identification of cyber threats and frauds in the mailboxes of large companies

My research activity concerns the study and experimentation aimed at the design, development and testing, on real contexts, of the defense systems against current and future cyber attacks. The "real context" is made available by the collaboration

Università degli Studi di Napoli Federico II

with the Cyber Security Lab of TIM S.p.A (Telecom Italia Lab, Turin), which provides real data and environments (in compliance with current regulations on privacy).

During the first year, the first step was to study the basic knowledges, open issues, and the challenges to be faced by this type of research work. During this phase I have identified a major point to focus on, in order to reach the origin of a large number of cyber attacks hurting people and companies: the identification of cyber threats in the mailboxes. In the second year this branch of research was strongly developed producing interesting results, which have been refined, validated, and expanded in this third year. To support this work I had to further deepen the studies already started in the first and second year, about Machine learning, Big Data Analysis and Cyber Security.

The context is the following: the email threat landscape is constantly evolving, making current countermeasures ineffective in protecting companies, especially because actually dangerous emails are able to evade carrier-grade spam filters and also deceive users. For this reason, Email is still one of the most used channels for making cyber attacks. Several law enforcement bodies (e.g. FBI, EUROPOL) and data protection agencies are constantly raising alarms in this regard, as more than 80% of executed email financial fraud is bv causing huge monetary losses. The outcome is that companies typically rely on teams of security analysts to perform manual inspection on such emails. However, spam emails that pass the spam filter check, especially in the case of large companies, are too many for such analysis to be effective. This research project aimed at providing a contribution to this important problem and leverages the collaboration with TIM S.p.A.

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Luigi Gallo

Figure 1 Collaborative Ecosystem

I designed a collaborative framework (Figure 1) supporting security analysts of the company in collaboration, to analyze the several malicious emails that evade the spam filter and cause security incidents. Thanks to this framework we collected a large labeled dataset, composed of real spam emails received in the company, each classified as critical or not relevant. Using this labeled dataset I have shown that some machine learning algorithms, with a properly designed feature set, can well identify the emails actually threating the security of the company. The complete set of features is shown in Table 1. I have also identified the main features that make a spam email dangerous and the best techniques and technologies to rely on for the defense. I have used both legacy and novel features and evaluated their relevance and correlation with the target. Using the best feature set maximizing the f1-score performance, the supervised approaches reaches 95.2% of precision and 91.6% of recall. I have also identified a reduced feature set that greatly reduce costs with a small impact on the performance.

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Luigi Gallo

Figure 2 Feature importance with wrapper method (SVM classifier as Wrapper)

The feature ranking work (Figure 2 shown the results) also provides an important explanation on how critical emails are built and can be detected. This knowledge led to the design of a week-long awareness campaign, which involved all 40,000+ employees of the partner company, including top managers and executives. This large social experiment confirmed that the developed system correctly models the phishing phenomenon and, together with well-trained people, represents a global defence ecosytem robust to the majority of email attacks.

In the last few months of this third year, I have been further investigating the cognitive aspects of phishing attacks, which vary from person to person. Therefore, I have begun collecting new specific data in order to subsequently infer about the correlation between certain personality traits with certain vulnerabilities to characteristics that fraudulent emails may have. As future work, I plan to release this new dataset to the scientific community.

PhD in Information Technology and Electrical Engineering – XXXIV Cycle

Luigi Gallo

Table 1 Features extracted from the raw data

Field	Feature	Description									
	is html	if it is an html mail									
	n emte blackist	in it is all fittin fidil the number of centre convert travered in the blackfirte									
	amail size	the number of since servers the enail									
	n recipients	the same of recipients									
	n hors	the number of SMTP hops									
	is IT	if the email comes from Italy									
General	is FU	if the email comes from Europe									
General	is NA	if the email comes from North America									
	is SA	if the email comes from South America									
	is RU	if the email comes from Russia									
	is AS	if the email comes from Asia									
	is AF	if the email comes from Africa									
	is OC	if the email comes from Oceania									
	language ³	the language of the mail									
	voc_rate ³	the rate of words of the content in the vocabulary									
	vdb_rate ³	the rate of words of the content within the basic vocabulary									
	vdb_agg_rate ³	the rate of adjectives within the content									
	vdb_v_rate ³	the rate of verbs within the content									
Content ³	vdb_s_rate ³	the rate of nouns within the content									
Content	vdb_art_rate ³	the rate of articles within the content									
	gulpease_index ³	readability index (Italian - Gulpease index [27], English - Flesch formula [15])									
	n_words_content ³	number of words in the content									
	n_disguisy	number of disguised words in the entire email (content, subject, address)									
	n_phishy*	number of deceiving words, related to phishing, in the content and subject									
	n_scammy	number of deceiving words, related to scamming, in the content and subject									
	screenshot width	the width of the email as it is displayed to the recipient									
	screenshot_heigth	the neight of the email as it is displayed to the recipient									
Minu	n images	number of images									
View	n images links	number of mages as links									
	hidden text words ⁴	percentage of text in the content not displayed to the recipient									
	hidden text chars ⁴	number of characters in the content not displayed to the recipient									
	n words subject	number of characters in the content in the subject									
Subject	n char subject	number of characters in the subject									
	is non ASCII subject	if the object contains non-ASCII characters									
	is re fwd subject	if the email is relied or forwarded									
	n links	number of links									
	n domains	number of link domains									
	vt rate	rate of links considered malicious by at least one engine of VirusTotal									
Links	vt I maximum	maximum number of VirusTotal engines that consider a link as malicious									
	vt positives	number of links considered malicious by at least one engine of VirusTotal									
	vt I clean	number of links not considered malicious by all engines VirusTotal									
	vt I unknown	number of unknown links to VirusTotal									
	n attachments	number of attachments									
	n_image_attachments	number of image type attachments									
	n_application_attachments	number of application type attachments									
	n_message_attachments	number of message type attachments									
	n_text_attachments	number of text type attachments									
	n_video_attachments	number of video type attachments									
	attachments_size	average size of attachments									
Attachments	vt_a_rate	rate of attachments considered malicious by at least one engine of VirusTotal									
	vt_a_maximum	maximum number of VirusTotal engines that consider an attachment as malicious									
	vt_a_positives	number of attachments considered malicious by at least one engine of VirusTotal									
	vt_a_clean	number of attachments not considered malicious by all Virus lotal engines									
	vt a vulnerable	number or attachments considered malicious by virus lotal engines not including corporate antivirus									
	vt_a_partial	number of attachments considered partially malicious by Virus lotal engines not including corporate antivirus									
	vt_a_protected	number or attachments considered malicious by Virus lotal engines including corporate antivirus									
	vt_a_unknown	number of unknown attachments to Virus lotal									
Other		number of attachments in TIP									
	n up a	number of attachments in TIP									
	n_up_i	the number of vinc among the recipients									
	n medium vins	the number of managers among the recipients									
	n high vins	the number of ton managers among the recipients									
	in mon that	and manager of say managers among the recipients									

PhD in Information Technology and Electrical Engineering – XXXIV Cycle Luigi Gallo

Together with the main activity explained above, for a broader view of cyber security problems, I also conducted research activities on Malware Analysis, Anomaly detection in network traffic, security in 5G mobile networks and Cyber-Physical sistems, and Cloud Robotics.

4 – PRODUCTS

Products of the third year:

International journal papers

Luigi Gallo, Alessandro Maiello, Alessio Botta, Giorgio Ventre, 2 Years in the anti-phishing group of a large company, Computers & Security, Volume 105, 2021, 102259, ISSN 0167-4048, <u>https://doi.org/10.1016/j.cose.2021.102259</u>.

International Conference and journal papers in preparation

"DewROS: a Platform for Informed Dew Robotics in ROS" (tentative title)

"Security testing methodologies for Network Traffic Analyzers" (tentative title)

"A game-based platform for phishing awareness testing" (tentative title)

5 - CONFERENCE AND SEMINARS

Attended MedComNet 2021 : 19th Mediterranean Communication and Computer Networking Conference

Attended Italian Networking Workshop (INW 22)

6 – ACTIVITY ABROAD

The pandemic did not allow for any periods spent abroad, nevertheless the research activities were carried out with multiple remote collaborations with foreign institutes

7 – TUTORSHIP

I have been involved as assistant to the exercises of the courses of "Fondamenti di Informatica" and "Computer Networks" (20 + 20 hours), for which I have also prepared some course materials.

Università degli Studi di Napoli Federico II

PhD in Information Technology and Electrical Engineering – XXXIV Cycle Luigi Gallo

In addition, I follow as co-advisor the preparation of the thesis by four MS students.