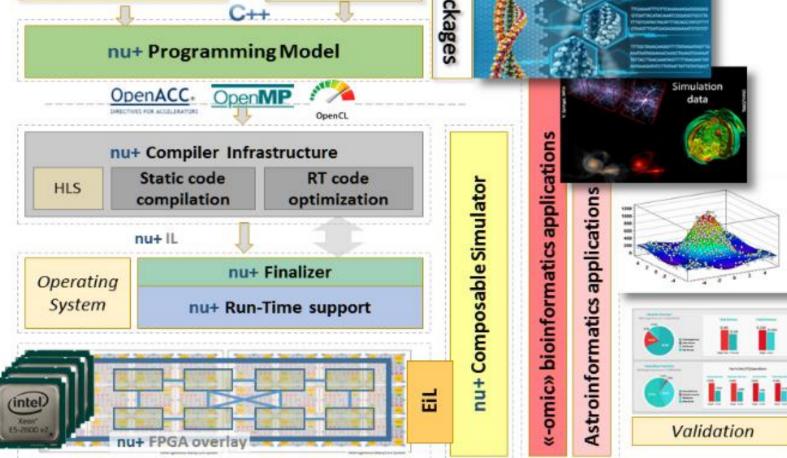

Mirko Gagliardi Tutor: Alessandro Cilardo XXXI Cycle - II year presentation


Exploring Advanced Computer Architectures and Techniques to Improve Performance and Power Efficiency in Manycore Era

Manycore Era High-performance architectures mostly rely on general-purpose compute units such as CPUs connected through a shared bus. Those solutions deliver adequate performance while ensuring programmability and application portability. Unfortunately, they are affected by inherently limited power-efficiency and lack of scalability.

Current trends in HPC are increasingly moving towards manycore based solutions. Such systems are based on a considerable number of lightweight cores typically connected through a Network-on-Chip (NoC), providing a scalable approach to the interconnection of parallel on-chip systems.


My research activity investigates manycore architecture exploration, the architectural requirements of emerging HPC applications and the most suitable power efficient and high-performance solutions.

Idea

Architectural customization might play a key role in modern high-performance architectures, as it enables unprecedented levels of power-efficiency compared to traditional systems.

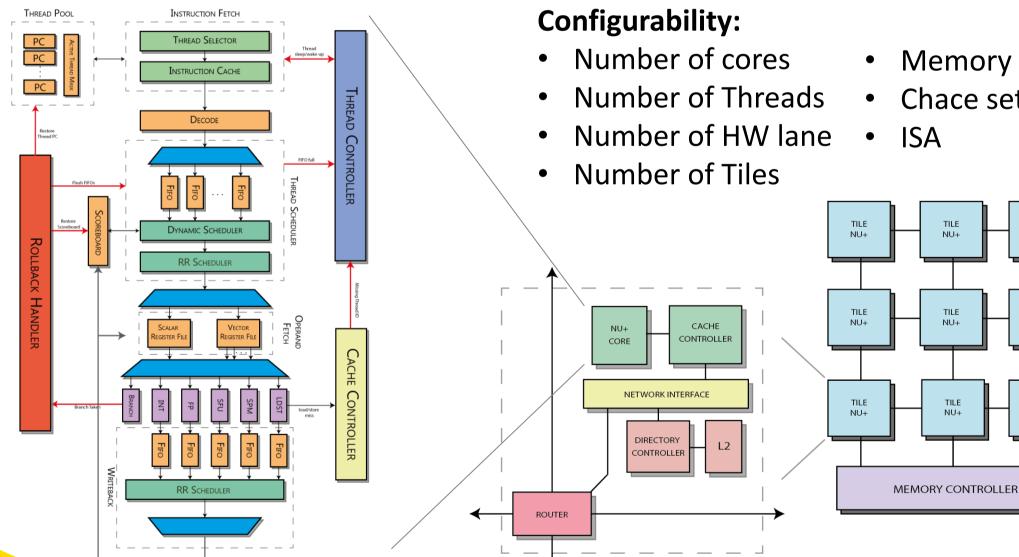
Proof of concept

Two custom hardware IPs, namely an AES cipher and FPU, have been integrated in a SoC system based on Arm Cortex-M0 DesignStart project. Their performance are compared with a software version running on the Cortex-MO. The hardware overhead is less than 2% on the

Manycore solutions exploration

Hardware remapping

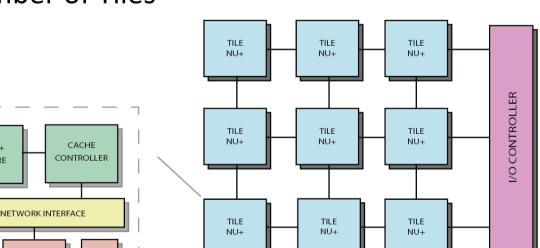
We explored a hardware remapping mechanism solution which enhances memory accesses in multi-banked memory systems. The proposed architecture enables a dynamic bank remapping hardware mechanism:

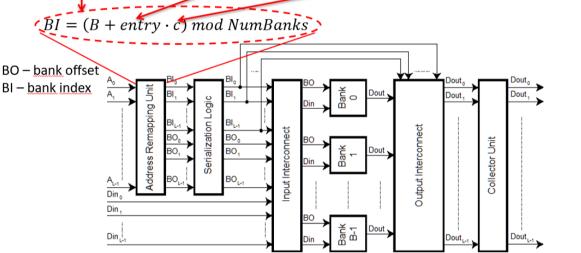

- allowing data to be redistributed across banks according to the specific access pattern,
- minimizing the number of conflicts and thereby improving the ultimate performance of the application. Results

Results show that hardware bank remapping mechanism drastically reduces bank conflicts, even with a limited number of banks, while adding little resource overhead compared to a solution relying on a large number of

rallel banks.	Lanes	Banks	anks Remapping factor			Lanes Banks	Remapping factor							
$\begin{bmatrix} log_2NumBanks \text{ bits} \\ B \end{bmatrix} = \begin{bmatrix} 32 - log_2NumBanks \text{ bits} \\ entry \end{bmatrix}$		241110	No Remap	1	2	4	8	20000		No Remap	1	2	4	8
C = remapping factor (customizable)		16	262146	131072	262146	5 26214	6 262146		16	109230	91756	109230	109230	109230
		32	262146	0	0	13107	2 262146		32	109230	32768	65538	91756	109230
$BI = (B + entry \cdot c) \mod NumBanks$		64	262146	0	0	0	0		64	109230	0	0	32768	65538
	4	128	262146	0	0	0	0	16	128	109230	0	0	0	0
BO – bank offset		256	131072	0	0	0	0		256	91756	0	0	0	0
BI – bank index $\xrightarrow{A_0}$ $\xrightarrow{H_0}$		512	0	0	0	0	0		512	65538	0	0	0	0
		1024	0	0	0	0	0		1024	32768	0	0	0	0
		16	183505	131073	183505	5 18350	5 183505		16	61696	58256	61696	61696	61696
		32	183505	0	65536	13107	3 183505		32	59768	32769	45878	54615	59768
		64	183505	0	0	0	65536		64	59768	0	16384	32769	45878
	8	128	183505	0	0	0	0	32	128	59768	0	0	0	16384
		256	131073	0	0	0	0		256	54615	0	0	0	0
		512	65536	0	0	0	0		512	45878	0	0	0	0
							-				-		-	-

Open-source and customizable manycore system

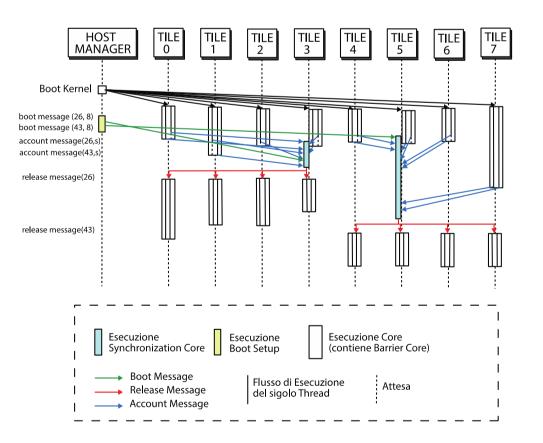

The main objective of nu+ is to enable resource-efficient HPC based on special-purpose customized hardware. The nu+ manycore is a parameterizable regular mesh Network-on-Chip of configurable tile. Each nu+ tile has the same basic components, it provides a configurable GPU-like open-source softcore meant to be used as a configurable FPGA overlay.



• Memory parameters

Key Init

- Chace set-size and way



Distributed synchronizer

The adoption of a distributed and NoC-based synchronization mechanism has been explored. At the heart of the proposed approach is a distributed synchronization master inspired by the directory-based coherence protocol.

Results

The centralized solution lacks scalability, even for small NoC configurations, and the final count is highly dependent on the position of the synchronization master. Our approach requires the same clock count for the smallest NoC, but results in improved scalability as the NoC size is increased.

	Barrier core	Boot setup	Centr	alized		Distributed			
			synchronization core			synchronization core			
			$(per \ processing \ core)$			(per processing core)			
			2×2	4×2	4×4	2×2	4×2	4×4	
LUT	69	16	257	324	572	185	207	268	
Flip-Flop	56	17	369	520	786	321	420	567	

NoC size	Centralized	Distributed				
2×2	26	26				
4×2	164	135				
4×4	263	216				
Average o	clock cycles p	er thread				

UNIVERSITAT

POLITÈCNICA

DE VALÈNCIA

H2020 European project MANGO: exploring Manycore Architectures for Next-GeneratiOn HPC systems

chosen to participate in the Intel "Hardware Accelerator Research Program" (Nov 2016)

Currently involved in an internship in the architecture research group at Arm

Future Works:

- Explore scalable memory coherence solutions, such as hierarchical coherence.
- Explore distributed main memory solutions.
- Exploiting heterogeneity, in the current state the manycore is composed by equal tiles.
- Exploring non regular Network-on-Chip configurations.
- Automate the code partitioning among all tiles, allowing software users to be unaware of the underlying architecture.