
	

	

	

	

PhD	 in Information	 Technology	 and	 Electrical	 Engineering	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II

	

PhD	 Student:	 Luigi	 De	 Simone	
XXIX	 Cycle	 	

Training	 and	 Research	 Activities	 Report	 –	 Second	 Year	

	
	

	

	

Tutor:	 Prof.	 Domenico	 Cotroneo	
	
	

	

	

	

	

	 	

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 2	

1. Information

PhD	 candidate:	 Luigi	 De	 Simone	
Date	 of	 birth:	 24/02/1986	
Master	 Science	 title:	 Master’s	 degree	 in	 Computer	 Engineering	 (cum	 laude),	 Universiy	 of	 Naples	 Federico	 II	
Doctoral	 Cycle:	 XXIX	
Fellowship	 type:	 PhD	 student	 grant	
Tutor:	 Prof.	 Domenico	 Cotroneo	
Year:	 Second	
	
I received my MS degree (cum laude) in Computer Engineering from the Univesità degli Studi di Napoli
Federico II in July 2013.

My master thesis focused on the dependability of the Linux OS, specifically the fault-tolerance of device
drivers. Device drivers are software components with the most of the defects (“bugs”) within an operating
system, thus they are the main cause of operating system failures. I proposed a novel fault-tolerance
approach based on run-time monitoring and fault-detection of a storage device driver, and I developed and
tested the approach to a storage device driver of the Linux kernel.

I’m currently at second year of PhD program in Information Technology and Electrical Engineering (ITEE) at
Federico II University of Naples, under the supervision of Prof. Domenico Cotroneo.

2. Study and Training activities

In this first year I attended the following courses and seminars.

Title Type Hours Credits Dates Organizer Certificate
Project Management Ad-hoc 3 30 Jan. 2015,

6,13,20 and 27
Feb. 2015

Università degli
Studi di Napoli
Federico II

Yes

Designing and writing
scientific manuscripts for
publication in english
language scholarly journals,
and related topics

Ad-hoc 3	 15, 16, 17 June
2015

Università degli
Studi di Napoli
Federico II

Yes

Modelli matematici e calcolo
scientifico nell'ingeneria e
nell'innovazione tecnlogica, by
Prof. Alfio Quarteroni

Seminary 2 0,4	 15/04/2015 DIETI Yes

Half Day Tutorial at DTIS2015
Conference. Title: The
Memories of Tomorrow:
Technology. Design, Test and
Dependability, by PhD Elena
Ioana Vatajelu

Seminary 3 0,6	 24/04/2015

DIETI Yes

Adversarial Testing of
Protocol Implementations, by
Prof. Cristina Nita Notaru

Seminary 1,5 0,4	 24/02/2016

DIETI Yes

Programmable network
conjugations, by Dr. Roberto
Bifulco

Seminary 1,5 0,4	 26/02/2016

DIETI Yes

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 3	

Student: Name Surname

Tutor: Prof. Domenico Cotroneo Cycle XXIX
 luigi.desimone@unina.it

cotroneo@unina.it

Credits
year 1 Credits year 2

Credits
year 3

 1 2 3 4 5 6

Es
tim

at
ed

Su
m

m
ar

y

Es
tim

at
ed

bi
m

on
th

bi
m

on
th

bi
m

on
th

bi
m

on
th

bi
m

on
th

bi
m

on
th

Su
m

m
ar

y

Es
tim

at
ed

Su
m

m
ar

y

To
ta

l

C
he

ck

Modules 20 23 10 3 3 6 9 9 38 30-70
Seminars 5 7,3 5 1 0,8 1,8 0,9 0,9 10 10-30
Research 35 37 45 6 7 10 10 10 9,2 52,2 50,1 50,1 139,3 80-140

60 67,3 60 10 10 10 10 10 10 60 60 60 187,3 180

3. Research activity

Title: Dependability Evaluation of Cloud Computing Ecosystems

Description and Study

3.1 Dependability evaluation of cloud computing infrastructures

In this first year of my PhD, the first goal of my research it has been to study and to understand which are the
challenges and open problems behind the evaluation of a cloud computing ecosystems (CCE)
dependability. As I have depicted in my study presented at IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW, Napoli 2014) [P1], it is necessary to conduct research and
develop techniques and methodologies that allow us to build countermeasures against faults, with the
purpose of preventing fault propagation within a CCE and, ultimately, of avoiding failures of the CCE as a
whole.

Furthermore, it is important to provide techniques and methodologies for understanding how faulty
components in the CCE can affect other components and the overall CCE services, and for predicting and
quantifying the impact of fault propagation on the CCE as a whole.

Recent studies have been done in testing of cloud-based applications [1], using cloud platforms to perform
testing of application [2], and studies related to verification of cloud services [3]. Furthermore, other studies
[4] addressed the problem of reliability of cloud infrastructure.

Nevertheless, there is still a need for approaches specifically focused on the reliability of cloud services and
infrastructures against faults.

In recent years, several studies and tools have proved that Fault Injection Testing is a valuable approach
for assessing fault-tolerant systems [5]. Fault injection is an approach in which we deliberately introduce
faults in a system. This approach can assess the robustness and performance of a system in the presence
of faults, and to state if fault tolerance algorithms and mechanisms are effective.

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 4	

In the CCE context, Virtualization is cornerstone technology to set up a CCE. Virtualization allows to
abstract physical resources (e.g., CPUs, network devices, storage devices, etc.) in order to share and to
provide resources, making a physical machine as a soft component to use and manage very easily.

Thus, to assure the dependability of cloud systems, it is necessary to assess the reliability of the
virtualization environment as a whole, focusing both on VMs and on the Hypervisor, as well as on the Cloud
Management Stack software that orchestrates them (such as the well-known OpenStack framework) to
efficiently manage cloud infrastructures.

Recent studies have faced with testing of components that constitute CCE, adopting fault injection to assure
a high-level of reliability of cloud systems. Unfortunately, these tools are not meant for the evaluation of CCE
architecture as a whole.

In addition to hardware faults, a system can be affected also by software faults and configuration faults. A
fundamental part of fault injection testing is the definition of the Fault Model, which is a description of the
types of fault that the system is expected to experience during runtime. It drives fault injection tests
specifying what to inject, when to inject and where to inject. It is very challenging to define realistic fault
models that take into account all the specifics of each CCE elements, given the complexity of these systems.
Furthermore, in the CCE context, software and operator faults have not yet been studied deeply, thus there
is another big question to answer.

Failures in CCEs may involve fault propagation, and due to complex interactions between different layers, it
is very challenging to predict and quantify which is the impact that such a propagation could have on the
CCE as a whole.

The idea is to leverage fault injection techniques to conduct such a fault propagation analysis. We can inject
faults (hardware, software and configuration faults) in each layer, to understand how these faults propagate
through different components and layers within CCEs. This analysis can give useful information about if
there is (or not) a fault propagation path from less critical components/layers to more critical
components/layers. Furthermore, we can discover new failure modes, and localize failures to the greatest
extent possible. This work aims to develop framework, tools, mechanisms, and algorithms in order to detect
faults and prevent their propagation within CCEs.

3.2 Dependability evaluation of NFV infrastructures

During the first and second year I have collaborated with a global leader company of TLC solutions, within an
industrial research project with the objective to propose methodology and tools to evaluate dependability of
Network Function Virtualization systems.

Network Function Virtualization (NFV) [6], [7] is an emerging solution to supersede traditional network
equipment to reduce costs, improve manageability, reduce time-to-market, and provide more advanced
services [8]. NFV will exploit IT virtualization technologies to turn network equipment into Virtualized Network
Functions (VNFs) that will be implemented in software, and will run on commodity hardware, virtualization
and cloud computing technologies located in high-performance data centers, namely Network Function
Virtualization Infrastructures (NFVIs). Thus, NFVI can be seen as a complex cloud computing infrastructures.

3.2.1 Challenges and Direction for Reliability Assurance

In particular, within my research group, I have studied the challenges to assess the risks introduced by
virtualization technologies for NFVI reliability [P3]. Towards this goal, we conduct the following activities:

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 5	

• Failure Mode and Effects Analysis of virtualization technologies in NFVIs: we need to analyze
the architecture of NFVI and its potential threats in order to understand what can affect reliability.
The FMEA should consider not only hardware failures, but also failures due to software and
configuration faults that can impact on virtualized resources (e.g., virtual CPU, memory, network and
storage);

• Definition of Key Performance Indicators and Methodologies for NFVI reliability: we will define
measures for fault tolerance and performance, and provide guidelines to allow reliability engineers to
systematically assess reliability by means of fault injection testing;

• Design of novel Fault Injection Techniques: because of the challenges in NFVIs (e.g., black-box
technologies), the most advantageous injection target seems to be represented by the interfaces of
the Compute, Hypervisor and Network domains. The errors and corruptions to be injected should be
defined on the basis of the FMEA;

• Validation using NFV products and technologies: we will conduct a proof-of-concept validation of
the fault injection approach on commercial NFV products, based on virtualization technologies such
as VMware and LXC.

3.2.2 Dependability benchmark of NFVI

It can be easily seen that the “softwarization” process of network functions raises performance and reliability
concerns. NFVIs should be able to achieve resiliency in spite of faults occurring within them, such as
hardware, software and configuration faults. The incidence of these faults is expected to be high, due to the
large scale and complexity of data centers hosting the NFVI, and due to the massive adoption of several off-
the-shelf hardware and software components: while these components are easily procured and replaceable,
NFVIs will need to recover from faulty components in a timely way while preserving high network
performance.

The prospective NFVI requirements and architecture, currently being defined by the ETSI [9], and presented
in this section, includes fault tolerance mechanisms that will be adopted in the emerging NFVIs. According to
these design principles, NFVI fault tolerance mechanisms will include fault detection, fault localization, and
fault recovery (Fig. 1).

Fault Detection mechanisms of the NFVI are aimed at noticing the failure of a component (such as a VM or
a node) as soon as the failure occurs, in order to timely start the fault treatment process. Fault Localization
mechanisms identify which components, among all components in the NFVI, have failed. Fault Recovery
mechanisms of the NFVI will perform a recovery action to remediate to the faulty component.

Given the complexity of this fault management process, it becomes important to get confidence that NFVIs
can achieve its strict performance and reliability requirements, which is the goal of the experimental
approach proposed in the research paper [P4]. In that study, we show a dependability evaluation and
benchmarking methodology for NFVIs. Based on fault injection, the methodology analyzes how faults impact
on VNFs in terms of performance degradation and service unavailability.

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 6	

The methodology includes three parts, which are summarized in Fig. 1.

	

Figure	 1.	 Overview	 of	 dependability	 evaluation	 methodology.	 	

The first part consists in the definition of key performance indicators (KPIs), the faultload (i.e., a set of faults
to inject in the NFVI) and the workload (i.e., inputs to submit to the NFVI) that will support the experimental
evaluation of an NFVI. Based on these elements, the second part of the methodology consists in the
execution of a sequence of fault injection experiments. In each fault injection experiment, the NFVI under
evaluation is first configured, by deploying a set of VNFs to exercise the NFVI; then, the workload is
submitted to the VNFs running on the NFVI and, during their execution, faults are injected; at the end of the
execution, performance and failure data are collected from the target NFVI; then, the experimental testbed is
cleaned-up (e.g., by un-deploying VNFs) before starting the next experiment. This process is repeated
several times, by injecting a different fault at each fault injection experiment (while using the same workload
and collecting the same performance and failure metrics).

3.2.2.1 Key Performance Indicators

To evaluate performance and dependability of an NFVI, we consider the quality of service as perceived by its
users. First, we define metrics for evaluating performance of an NFVI, which will be based on the
responsiveness of VNFs running on the NFVI (referred to as VNF latency and VNF throughput). It is
important to note that, while latency and throughput are widely adopted for characterizing performance of
several types of systems, we specifically consider latency and throughput in the presence of faults, to
quantify the impact of these faults, and evaluate whether the impact is too strong to be neglected.

1) VNF Latency and Throughput: The VNF latency is the time required by a network of VNFs to
process incoming traffic, which can be evaluated by measuring the time between a unit of traffic
(such as a packet or a service request) enters the network of VNFs, and the time at which the
processing of that unit of traffic is completed (e.g., a packet is routed to a destination after
inspection, and leaves the VNFs; or, a response is provided to the source of a request). The VNF
throughput considers the rate at which traffic units are successfully processed, e.g., processed
packets or requests per second, in the presence of faults.

2) Experimental Availability: Availability is a key aspect of quality of service. According to the TL 9000
definition for telecommunication systems [10], [11], availability is “the ability of a unit to be in a state
ready to perform a required function at a given instant in time”. The NFVI and its VNFs can become
unavailable because of faulty components, causing service disruptions such as user-perceived
outages, data losses and corruptions. It must be noted that, in general, availability cannot be
predicted in probabilistic terms by the sole application of fault injection. Fault injection specifically

Deployment
of VNFs over

the NFVI
Workload and VNFs

execution
Data

collection
Testbed
clean-

up
... ...

Injection of the i-th fault

Definition of
workload,

faultload, and
KPIs

Fault Injection
Experiments

Computation of
KPIs and
reporting

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 7	

focuses on evaluating the reaction of a system given that a fault already occurred. The availability
also depends on the probability of occurrence of faults, which relies on other factors beyond the
possibilities of fault injection and of our evaluation methodology, such as the reliability of individual
components.

3) Risk Score: The Risk Score (RS) provides a brief and concise measure of the impact of faults within
the NFVI, such as the risk of experiencing service unavailability and performance failures. We take
into account several factors in the evaluation of risk, including:

a. the type of service and its criticality (in terms of number of users and importance of the
service for the users);

b. the impact of faults on the service as perceived by the end-users;
c. the relative frequency of occurrence of faults.

The Risk Score summarizes these factors, to provide an indication of risk for system designers, and
to guide further analysis and improvements. In particular, the higher is the RS, the higher is the risk
of service failures and, consequently, the worse is the capability of the underlying NFVI infrastructure
to tolerate faults and assure service availability.
The Risk Score is a weighted sum of the number of service failures in fault injection experiments. It is
defined as:

3.2.2.2 Fault Model

Fault injection in distributed systems encompasses two main fault categories: faults affecting I/O
components (e.g., virtual network and storage), and faults affecting computational components (e.g., virtual
CPUs and virtual memory). Faults in virtualized infrastructures (including hardware faults in OTS equipment,
and software and configuration faults in the virtualization layer) mostly manifest as disruptions in I/O traffic
(e.g., the transient loss or corruption of network packets, or the permanent unavailability of a network
interface) and erratic behavior of the CPU and memory subsystems (in particular, corruption of instructions
and data in memory and registers, crashes of VMs and physical nodes, and resource leaks).

These types of faults can be injected by emulating their effects on the virtualization layer. In particular, I/O
faults and Compute faults (Fig. 2) can be emulated, respectively, by deliberately injecting I/O losses,
corruptions and delays, and by injecting code and data corruptions, by forcing the termination of VMs and of
their hosting nodes, and by introducing CPU and memory “hogs” (i.e., tasks that deliberately consume CPU
cycles and allocate memory areas in order to cause resource exhaustion). Faults can be injected either in a
specific VM (e.g., traffic from/to a VM), or in an NFVI node (affecting the hypervisor and all VMs deployed on
the node).

RS =
Weighted
average
over all
faults

∑ ()% +
Performance

failures

%
Availability

failures

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 8	

Figure	 2.	 Faultload	 for	 the	 dependability	 evaluation	 of	 NFVIs.	 	

3.2.2.3 Workload

During fault injection tests, the NFVI has to be exercised using a workload. In order to obtain reasonable and
realistic results from fault injection, these workloads should reflect the workloads that VNFs will face in
production: in this way, the experiments will provide a realistic picture of performance and dependability of
the NFVI. Realistic workloads are typically generated using load generators and performance benchmarking
tools. Our dependability benchmarking methodology is not tied to a specific choice of workload.

3.2.2.4 Case study and results

To show the application of the dependability evaluation methodology, we perform an experimental analysis
of a virtualized IP Multimedia Subsystem (IMS) deployed over an NFVI.

The VNFs running on the NFVI under evaluation are from the Clearwater project [12], [13], which is an open-
source implementation of an IMS for cloud computing platforms. Figure 8 shows the components of the
Clearwater IMS that are deployed on the NFVI testbed. They are:

• Bono: the SIP edge proxy, which provides both SIP IMS Gm and WebRTC interfaces to clients.
• Sprout: the SIP registrar and authoritative routing proxy, and handles client authentication.
• Homestead: component for retrieving authentication credentials and user profile information.
• Homer: XML Document Management Server that stores MMTEL service settings for each user.
• Ralf: component that provides billing services

The goal of this analysis is to provide examples of results that can be obtained from fault injection. We
consider a commercial virtualization platform (the VMware ESXi hypervisor) running real-world, open-source
NFV software. In these experiments, we adopt fault injection to analyze:

• Whether degradations/outages are more frequent or more severe than reasonable limits;
• The impact of different types of faults, to identify the faults to which the NFVI is most vulnerable;
• The impact of different faulty component, to find the components to which the NFVI is most sensitive.

The case study on the IMS showed how the methodology can point out dependability bottlenecks in the
NFVI and guide design efforts. In particular, we have found these fundamental insights:

Network frame receive/transmit

Corruption Drop Delay

Host VM Host VM Host VM

Storage block reads/write

Corruption Drop Delay

Host VM Host VM Host VM

I/O faults

Compute faults

Hogs Crash Code corruption Data corruption

CPU Memory Host VM Host VM Host VM

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 9	

• Faults have a strong impact on availability! Compute faults and Sprout-VM faults have the
strongest impact;

• Over than 10% of requests exhibit a latency much higher than 250ms;
• The overall risk score (55%) is quite high and reflects the strong impact of faults on the

infrastructure;
• In our experiments, automated VM recovery was too slow and availability resulted low.

3.2.3 Quantitative Assessment of Isolation Properties in Container-based Virtualization

During my second year I have also started studies about application of new emerging virtualization
technology known as container-based virtualization, within the DEEDS research group at TU Darmstadt,
under the supervision of Prof. Neeraj Suri.

Virtualization technologies are the core enabler of cloud computing. Several techniques [14], [15] are
currently available, and the most important ones are:

• Full-virtualization;
• Para-virtualization;
• Container-based virtualization.

Container-based virtualization, also called Operating System-level virtualization, allows running multiple
appliances without hardware virtualization. Resource virtualization in OSs is an old idea, based on the
concept of process. The idea behind container-based virtualization is to enhance the abstractions of OS
processes (now called containers), by extending the (host) OS kernel. In container-based virtualization, a
container has its own virtual CPU and virtual memory (like in traditional OS processes). In this kind of
virtualization, it is also added abstractions for a virtual filesystem (i.e., the container perceives a filesystem
structure that is different than the host’s), virtual network (i.e., the container sees a different set of networking
interfaces), IPC, PIDs, and users management. These virtual resources are distinct for each container in the
system.

We are witnessing an increasing use of container-based virtualization in cloud infrastructures. Examples are
Google [16], [17], Amazon [18], and Microsoft [19], which are already providing cloud services running on
containers. Containers are expected to be fast, thus providing high performance, since there is no extra
overhead due to emulation of devices. Moreover, containers make virtualization more manageable, since
creating and moving containers is easier and faster. NFV infrastructures require extremely low packet
processing overheads, controlled latency, automatic recovery from faults, and extremely high availability
(99.99% or higher); container-based virtualization can be one of the more suitable solution for NFV.

In general, virtualization has to address the critical problem of guarantee the isolation among virtual
instances [20]. In the more general sense, isolation means the fact that something is independent and
disentangled to the behaviors of other things. Thus, the virtualization layer has to be in complete control of
virtualized resources, and applications running on a virtual domain must have the illusion to be completely
isolated from others. Unlike full-virtualization, in container-based virtualization, the “virtualization surface”
(i.e., the isolation boundary) between virtual domains and the host is minimal, thus the likelihood of having
interferences (e.g., failures in a container may affect the entire infrastructure) can be very high!

The isolation property has two main flavors:

• Performance isolation: the capability of isolating or limiting the impact of resource consumption
(e.g., CPU, network, disk) of container on the performance degradation of the other containers, and
the host kernel;

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 10	

• Memory isolation: the capability of isolating code and data between containers, and between
containers and the host kernel.

Title: Reliability evaluation in device drivers

3.2.4 Run-Time Monitoring for I/O Protocol Violations in Storage Device Drivers

Another important piece of my research is about reliability in device drivers. It is well known that device
drivers are the most bug-prone part of the OS [21], [22], [23], and represent a critical component of every
storage stack in IT systems. Bugs affecting storage device drivers include the so-called protocol violation
bugs, which silently corrupt data and commands exchanged with I/O devices. Protocol violations are very
difficult to prevent, since testing device driver is notoriously difficult. To address them, we present in [P5] a
monitoring approach for device drivers (MoIO) to detect I/O protocol violations at run-time. The approach
infers a model of the interactions between the storage device driver, the OS kernel, and the hardware (the
device driver protocol) by analyzing execution traces. The model is then used as a reference for detecting
violations in production. The approach has been designed to have a low overhead and to overcome the lack
of source code and protocol documentation. We show that the approach is feasible and effective by applying
it on the SATA/AHCI storage device driver of the Linux kernel, and by performing fault injection and long-
running tests.

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 11	

4. Products

In this second year, I have produced the following products.

4.1 Publications

Conference Paper

[P4] Domenico Cotroneo, Luigi De Simone, Antonio Ken Iannillo, Anna Lanzaro, Roberto
Natella, “Dependability Evaluation and Benchmarking of Network Function Virtualization
Infrastructures”, at 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1 – 9, 13-
17 April 2015 London, DOI: 10.1109/NETSOFT.2015.7116123
BEST PAPER AWARD

[P5] Domenico Cotroneo, Luigi De Simone, Francesco Fucci, Roberto Natella, “MoIO: Run-time
monitoring for I/O protocol violations in storage device drivers”, at Software Reliability
Engineering (ISSRE), 2015 IEEE 26th International Symposium on, pp. 472 – 483, 2-5 Nov.
2015 Gaithersbury, MD, DOI: 10.1109/ISSRE.2015.7381840

5. Activity abroad

During my second year I spent 2 months (September 2015 – October 2015) at TU Darmstadt within the
DEEDS group, under the supervision of Prof. Neeraj Suri. I have started studies about application of new
emerging virtualization technology known as container-based virtualization, in order to quantitatively assess
isolation properties from the perspective of dependability.

6. Tutorship

During the second year I have been teaching assistant for the course of Operating Systems, a.a. 2014/2015.
Furthermore, I have been MSc thesis co-advisor on topic about verification of fault tolerant mechanisms in
NFV.

	

	

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 12	

References

[P1]	 De	 Simone,	 L.,	 "Towards	 Fault	 Propagation	 Analysis	 in	 Cloud	 Computing	 Ecosystems,"	 Software	 Reliability	
Engineering	 Workshops	 (ISSREW),	 2014	 IEEE	 International	 Symposium	 on	 ,	 pp.156,161,	 3-‐6	 Nov.	 2014,	 DOI:	
10.1109/ISSREW.2014.47	
[P2]	 Cotroneo,	 D.;	 De	 Simone,	 L.;	 Iannillo,	 A.K.;	 Lanzaro,	 A.;	 Natella,	 R.;	 Jiang	 Fan;	 Wang	 Ping,	 "Network	 Function	
Virtualization:	 Challenges	 and	 Directions	 for	 Reliability	 Assurance,"	 Software	 Reliability	 Engineering	 Workshops	
(ISSREW),	 2014	 IEEE	 International	 Symposium	 on	 ,	 pp.37,42,	 3-‐6	 Nov.	 2014,	 DOI:	 10.1109/ISSREW.2014.48	
[P3]	 Cotroneo,	 D.;	 De	 Simone,	 L.;	 Iannillo,	 A.K.;	 Lanzaro,	 A.;	 Natella,	 R.,	 "Improving	 Usability	 of	 Fault	 Injection,"	
Software	 Reliability	 Engineering	 Workshops	 (ISSREW),	 2014	 IEEE	 International	 Symposium	 on,	 pp.530,532,	 3-‐6	 Nov.	
2014,	 DOI:	 10.1109/ISSREW.2014.37	
[1]	 X.	 Bai,	 M.	 Li,	 B.	 Chen,	 W.-‐T.	 Tsai,	 and	 J.	 Gao,	 “Cloud	 testing	 tools,”	 in	 Proc.	 Intl.	 Symp.	 SOSE,	 2011,	 pp.	 1–12.	 	
[2]	 L.	 Ciortea,	 C.	 Zamfir,	 S.	 Bucur,	 V.	 Chipounov,	 and	 G.	 Candea,	 “Cloud9:	 A	 software	 testing	 service,”	 SIGOPS	
Operating	 System	 Review,	 vol.	 43,	 no.	 4,	 pp.	 5–10,	 Jan.	 2010.	 	
[3]	 S.	 Bouchenak,	 G.	 Chockler,	 H.	 Chockler,	 G.	 Gheorghe,	 N.	 Santos,	 and	 A.	 Shraer,	 “Verifying	 cloud	 services:	 Present	
and	 future,”	 SIGOPS	 Operating	 System	 Review,	 vol.	 47,	 no.	 2,	 pp.	 6–19,	 Jul.	 2013.	 	
[4]	 	 A.	 Bessani,	 R.	 Kapitza,	 D.	 Petcu,	 P.	 Romano,	 S.	 V.	 Gogouvitis,	 D.	 Kyriazis,	 and	 R.	 G.	 Cascella,	 “A	 look	 to	 the	 old-‐world	
sky:	 EU-‐	 funded	 dependability	 cloud	 computing	 research,”	 SIGOPS	 Operating	 Systems	 Review,	 vol.	 46,	 no.	 2,	 pp.	 43–
56,	 Jul.	 2012.	 	 	
[5]	 R.	 Natella,	 D.	 Cotroneo,	 J.	 Duraes,	 and	 H.	 Madeira,	 “On	 fault	 representativeness	 of	 software	 fault	 injection,”	
Software	 Engineering,	 IEEE	 Transactions	 on,	 vol.	 39,	 no.	 1,	 pp.	 80–96,	 Jan	 2013.	 	
[6]	 NFV	 ISG,	 “Network	 Functions	 Virtualisation	 -‐	 An	 Introduction,	 Bene-‐	 fits,	 Enablers,	 Challenges	 &	 Call	 for	 Action,”	
ETSI,	 Tech.	 Rep.,	 2012.	 	 	
[7]	 NFV	 ISG,	 “Network	 Functions	 Virtualisation	 (NFV)	 -‐	 Network	 Operator	 Perspectives	 on	 Industry	 Progress,”	 ETSI,	
Tech.	 Rep.,	 2013.	 	 	
[8]	 	 A.	 Manzalini,	 R.	 Minerva,	 E.	 Kaempfer,	 F.	 Callegari,	 A.	 Campi,	 W.	 Cerroni,	 N.	 Crespi,	 E.	 Dekel,	 Y.	 Tock,	 W.	 Tavernier	
et	 al.,	 “Manifesto	 of	 edge	 ICT	 fabric,”	 in	 Proc.	 ICIN,	 2013,	 pp.	 9–15.	 	 	
[9]	 NFV	 ISG,	 “Network	 Function	 Virtualisation	 (NFV)	 -‐	 Resiliency	 Requirements,”	 ETSI,	 Tech.	 Rep.,	 2014.	 	
[10]	 E.	 Bauer	 and	 R.	 Adams,	 Reliability	 and	 Availability	 of	 Cloud	 Computing,	 1st	 ed.	 Wiley-‐IEEE	 Press,	 2012.	 	
[11]	 Quality	 Excellence	 for	 Suppliers	 of	 Telecommunications	 Forum	 (QuEST	 Forum),	 “TL	 9000	 Quality	 Management	
System	 Measurements	 Handbook	 4.5,”	 Tech.	 Rep.,	 2010.	 	
[12]	 Clearwater,	 “Project	 Clearwater	 -‐	 IMS	 in	 the	 Cloud,”	 2014.	 [Online].	 Available:	 http://www.projectclearwater.org/	 	
[13]	 G.	 Carella,	 M.	 Corici,	 P.	 Crosta,	 P.	 Comi,	 T.	 M.	 Bohnert,	 A.	 A.	 Corici,	 D.	 Vingarzan,	 and	 T.	 Magedanz,	 “Cloudified	 IP	
Multimedia	 Subsystem	 (IMS)	 for	 Network	 Function	 Virtualization	 (NFV)-‐based	 architectures,”	 in	 Proc.	 ISCC,	 2014.	
[14]	 A.	 S.	 Tanenbaum	 and	 H.	 Bos,	 Modern	 Operating	 Systems,	 4th	 ed.	 Upper	 Saddle	 River,	 NJ,	 USA:	 Prentice	 Hall	 Press,	
2014.	 	
[15]	 D.	 C.	 van	 Moolenbroek,	 R.	 Appuswamy,	 and	 A.	 S.	 Tanenbaum,	 “Towards	 a	 flexible,	 lightweight	 virtualization	
alternative,”	 in	 Proceedings	 of	 International	 Conference	 on	 Systems	 and	 Storage,	 2014,	 pp.	 8:1–8:7.	
[16]	 Google	 Inc.	 Google	 Cloud	 Platform.	 [Online].	 Available:	 https:	 //cloud.google.com/container-‐	 engine/	 	
[17]	 ——.	 Kubernetes.	 [Online].	 Available:	 http://kubernetes.io/	 	
[18]	 Amazon.	 Amazon	 EC2	 Container	 Service.	 [Online].	 Available:	 http://aws.amazon.com/it/ecs/	 	
[19]	 	 Microsoft	 Azure	 Team.	 New	 Windows	 Server	 containers	 and	 Azure	 support	 for	 Docker.	 [Online].	 Available:	
http://azure.microsoft.com/blog/2014/10/15/	 new-‐	 windows-‐	 server-‐	 containers-‐	 and-‐	 azure-‐	 support-‐	 for-‐	
docker/?WT.	 mc	 id=Blog	 ServerCloud	 Announce	 TTD	

Training	 and	 Research	 Activities	 Report	 –	 First	 Year	

PhD	 in	 Information	 Technology	 and	 Electrical	 Engineering	 –	 XXIX	 Cycle	

Luigi	 De	 Simone	

	

Università	 degli	 Studi	 di	 Napoli	 Federico	 II	

	 13	

[20]	 	 E.	 Bugnion,	 S.	 Devine,	 M.	 Rosenblum,	 J.	 Sugerman,	 and	 E.	 Y.	 Wang,	 “Bringing	 Virtualization	 to	 the	 x86	
Architecture	 with	 the	 Original	 VMware	 Workstation,”	 ACM	 Transactions	 on	 Computer	 Systems	 (TOCS),	 vol.	 30,	 no.	 4,	
2012.	
[21]	 A.	 Chou,	 J.	 Yang,	 B.	 Chelf,	 S.	 Hallem,	 and	 D.	 Engler,	 “An	 empirical	 study	 of	 operating	 systems	 errors,”	 in	 SOSP	 ’01.	 	
Average	 execution	 time	 [s]	 	
[22]	 	 A.	 Ganapathi,	 V.	 Ganapathi,	 and	 D.	 A.	 Patterson,	 “Windows	 XP	 Kernel	 Crash	 Analysis,”	 in	 LISA’06.	 	 	
[23]	 	 N.	 Palix,	 G.	 Thomas,	 S.	 Saha,	 C.	 Calve`s,	 J.	 Lawall,	 and	 G.	 Muller,	 “Faults	 in	 Linux:	 Ten	 years	 later,”	 in	 ACM	
SIGARCH	 Computer	 Architecture	 News,	 vol.	 39,	 no.	 1,	 2011.	

