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1. Information 
 

PhD	  candidate:	  Luigi	  De	  Simone	  
Date	  of	  birth:	  24/02/1986	  
Master	  Science	  title:	  Master’s	  degree	  in	  Computer	  Engineering	  (cum	  laude),	  Universiy	  of	  Naples	  Federico	  II	  
Doctoral	  Cycle:	  XXIX	  
Fellowship	  type:	  PhD	  student	  grant	  
Tutor:	  Prof.	  Domenico	  Cotroneo	  
Year:	  Second	  
	  
I received my MS degree (cum laude) in Computer Engineering from the Univesità degli Studi di Napoli 
Federico II in July 2013.  

My master thesis focused on the dependability of the Linux OS, specifically the fault-tolerance of device 
drivers. Device drivers are software components with the most of the defects (“bugs”) within an operating 
system, thus they are the main cause of operating system failures. I proposed a novel fault-tolerance 
approach based on run-time monitoring and fault-detection of a storage device driver, and I developed and 
tested the approach to a storage device driver of the Linux kernel. 

I’m currently at second year of PhD program in Information Technology and Electrical Engineering (ITEE) at 
Federico II University of Naples, under the supervision of Prof. Domenico Cotroneo. 

2. Study and Training activities 
 

In this first year I attended the following courses and seminars. 

Title Type Hours Credits Dates Organizer Certificate 
Project Management Ad-hoc  3 30 Jan. 2015, 

6,13,20 and 27 
Feb. 2015 
 

Università degli 
Studi di Napoli 
Federico II 

Yes 

Designing and writing 
scientific manuscripts for 
publication in english 
language scholarly journals, 
and related topics 

Ad-hoc  3	   15, 16, 17 June 
2015 

Università degli 
Studi di Napoli 
Federico II 

Yes 

Modelli matematici e calcolo 
scientifico nell'ingeneria e 
nell'innovazione tecnlogica, by 
Prof. Alfio Quarteroni 

Seminary 2 0,4	   15/04/2015 DIETI Yes 

Half Day Tutorial at DTIS2015 
Conference. Title: The 
Memories of Tomorrow: 
Technology. Design, Test and 
Dependability, by PhD Elena 
Ioana Vatajelu 

Seminary 3 0,6	   24/04/2015 

 

DIETI Yes 

Adversarial Testing of 
Protocol Implementations, by 
Prof. Cristina Nita Notaru 
 

Seminary 1,5 0,4	   24/02/2016 

 

DIETI Yes 

Programmable network 
conjugations, by Dr. Roberto 
Bifulco 

Seminary 1,5 0,4	   26/02/2016 
 

DIETI Yes 
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Modules 20 23 10 3 3         6 9 9 38 30-70           
Seminars 5 7,3 5 1         0,8 1,8 0,9 0,9 10 10-30           
Research 35 37 45 6 7 10 10 10 9,2 52,2 50,1 50,1 139,3 80-140           

 
60 67,3 60 10 10 10 10 10 10 60 60 60 187,3 180           

 

3. Research activity 
 

Title: Dependability Evaluation of Cloud Computing Ecosystems 

Description and Study 

3.1 Dependability evaluation of cloud computing infrastructures 

In this first year of my PhD, the first goal of my research it has been to study and to understand which are the 
challenges and open problems behind the evaluation of a cloud computing ecosystems (CCE) 
dependability. As I have depicted in my study presented at IEEE International Symposium on Software 
Reliability Engineering Workshops (ISSREW, Napoli 2014) [P1], it is necessary to conduct research and 
develop techniques and methodologies that allow us to build countermeasures against faults, with the 
purpose of preventing fault propagation within a CCE and, ultimately, of avoiding failures of the CCE as a 
whole. 

Furthermore, it is important to provide techniques and methodologies for understanding how faulty 
components in the CCE can affect other components and the overall CCE services, and for predicting and 
quantifying the impact of fault propagation on the CCE as a whole.  

Recent studies have been done in testing of cloud-based applications [1], using cloud platforms to perform 
testing of application [2], and studies related to verification of cloud services [3]. Furthermore, other studies 
[4] addressed the problem of reliability of cloud infrastructure. 

Nevertheless, there is still a need for approaches specifically focused on the reliability of cloud services and 
infrastructures against faults. 

In recent years, several studies and tools have proved that Fault Injection Testing is a valuable approach 
for assessing fault-tolerant systems [5]. Fault injection is an approach in which we deliberately introduce 
faults in a system. This approach can assess the robustness and performance of a system in the presence 
of faults, and to state if fault tolerance algorithms and mechanisms are effective.  
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In the CCE context, Virtualization is cornerstone technology to set up a CCE. Virtualization allows to 
abstract physical resources (e.g., CPUs, network devices, storage devices, etc.) in order to share and to 
provide resources, making a physical machine as a soft component to use and manage very easily. 

Thus, to assure the dependability of cloud systems, it is necessary to assess the reliability of the 
virtualization environment as a whole, focusing both on VMs and on the Hypervisor, as well as on the Cloud 
Management Stack software that orchestrates them (such as the well-known OpenStack framework) to 
efficiently manage cloud infrastructures. 

Recent studies have faced with testing of components that constitute CCE, adopting fault injection to assure 
a high-level of reliability of cloud systems. Unfortunately, these tools are not meant for the evaluation of CCE 
architecture as a whole. 

In addition to hardware faults, a system can be affected also by software faults and configuration faults. A 
fundamental part of fault injection testing is the definition of the Fault Model, which is a description of the 
types of fault that the system is expected to experience during runtime. It drives fault injection tests 
specifying what to inject, when to inject and where to inject. It is very challenging to define realistic fault 
models that take into account all the specifics of each CCE elements, given the complexity of these systems. 
Furthermore, in the CCE context, software and operator faults have not yet been studied deeply, thus there 
is another big question to answer. 

Failures in CCEs may involve fault propagation, and due to complex interactions between different layers, it 
is very challenging to predict and quantify which is the impact that such a propagation could have on the 
CCE as a whole.  

The idea is to leverage fault injection techniques to conduct such a fault propagation analysis. We can inject 
faults (hardware, software and configuration faults) in each layer, to understand how these faults propagate 
through different components and layers within CCEs. This analysis can give useful information about if 
there is (or not) a fault propagation path from less critical components/layers to more critical 
components/layers. Furthermore, we can discover new failure modes, and localize failures to the greatest 
extent possible. This work aims to develop framework, tools, mechanisms, and algorithms in order to detect 
faults and prevent their propagation within CCEs.  

3.2 Dependability evaluation of NFV infrastructures 

During the first and second year I have collaborated with a global leader company of TLC solutions, within an 
industrial research project with the objective to propose methodology and tools to evaluate dependability of 
Network Function Virtualization systems. 

Network Function Virtualization (NFV) [6], [7] is an emerging solution to supersede traditional network 
equipment to reduce costs, improve manageability, reduce time-to-market, and provide more advanced 
services [8]. NFV will exploit IT virtualization technologies to turn network equipment into Virtualized Network 
Functions (VNFs) that will be implemented in software, and will run on commodity hardware, virtualization 
and cloud computing technologies located in high-performance data centers, namely Network Function 
Virtualization Infrastructures (NFVIs). Thus, NFVI can be seen as a complex cloud computing infrastructures. 

3.2.1 Challenges and Direction for Reliability Assurance 

In particular, within my research group, I have studied the challenges to assess the risks introduced by 
virtualization technologies for NFVI reliability [P3]. Towards this goal, we conduct the following activities:  
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• Failure Mode and Effects Analysis of virtualization technologies in NFVIs: we need to analyze 
the architecture of NFVI and its potential threats in order to understand what can affect reliability. 
The FMEA should consider not only hardware failures, but also failures due to software and 
configuration faults that can impact on virtualized resources (e.g., virtual CPU, memory, network and 
storage);  

• Definition of Key Performance Indicators and Methodologies for NFVI reliability: we will define 
measures for fault tolerance and performance, and provide guidelines to allow reliability engineers to 
systematically assess reliability by means of fault injection testing;  

• Design of novel Fault Injection Techniques: because of the challenges in NFVIs (e.g., black-box 
technologies), the most advantageous injection target seems to be represented by the interfaces of 
the Compute, Hypervisor and Network domains. The errors and corruptions to be injected should be 
defined on the basis of the FMEA;  

• Validation using NFV products and technologies: we will conduct a proof-of-concept validation of 
the fault injection approach on commercial NFV products, based on virtualization technologies such 
as VMware and LXC. 
 

3.2.2 Dependability benchmark of NFVI 
 
It can be easily seen that the “softwarization” process of network functions raises performance and reliability 
concerns. NFVIs should be able to achieve resiliency in spite of faults occurring within them, such as 
hardware, software and configuration faults. The incidence of these faults is expected to be high, due to the 
large scale and complexity of data centers hosting the NFVI, and due to the massive adoption of several off- 
the-shelf hardware and software components: while these components are easily procured and replaceable, 
NFVIs will need to recover from faulty components in a timely way while preserving high network 
performance.  

The prospective NFVI requirements and architecture, currently being defined by the ETSI [9], and presented 
in this section, includes fault tolerance mechanisms that will be adopted in the emerging NFVIs. According to 
these design principles, NFVI fault tolerance mechanisms will include fault detection, fault localization, and 
fault recovery (Fig. 1).  

Fault Detection mechanisms of the NFVI are aimed at noticing the failure of a component (such as a VM or 
a node) as soon as the failure occurs, in order to timely start the fault treatment process. Fault Localization 
mechanisms identify which components, among all components in the NFVI, have failed. Fault Recovery 
mechanisms of the NFVI will perform a recovery action to remediate to the faulty component.  

Given the complexity of this fault management process, it becomes important to get confidence that NFVIs 
can achieve its strict performance and reliability requirements, which is the goal of the experimental 
approach proposed in the research paper [P4]. In that study, we show a dependability evaluation and 
benchmarking methodology for NFVIs. Based on fault injection, the methodology analyzes how faults impact 
on VNFs in terms of performance degradation and service unavailability.  
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The methodology includes three parts, which are summarized in Fig. 1. 

	  

Figure	  1.	  Overview	  of	  dependability	  evaluation	  methodology.	  	  

The first part consists in the definition of key performance indicators (KPIs), the faultload (i.e., a set of faults 
to inject in the NFVI) and the workload (i.e., inputs to submit to the NFVI) that will support the experimental 
evaluation of an NFVI. Based on these elements, the second part of the methodology consists in the 
execution of a sequence of fault injection experiments. In each fault injection experiment, the NFVI under 
evaluation is first configured, by deploying a set of VNFs to exercise the NFVI; then, the workload is 
submitted to the VNFs running on the NFVI and, during their execution, faults are injected; at the end of the 
execution, performance and failure data are collected from the target NFVI; then, the experimental testbed is 
cleaned-up (e.g., by un-deploying VNFs) before starting the next experiment. This process is repeated 
several times, by injecting a different fault at each fault injection experiment (while using the same workload 
and collecting the same performance and failure metrics).  

3.2.2.1 Key Performance Indicators  

To evaluate performance and dependability of an NFVI, we consider the quality of service as perceived by its 
users. First, we define metrics for evaluating performance of an NFVI, which will be based on the 
responsiveness of VNFs running on the NFVI (referred to as VNF latency and VNF throughput). It is 
important to note that, while latency and throughput are widely adopted for characterizing performance of 
several types of systems, we specifically consider latency and throughput in the presence of faults, to 
quantify the impact of these faults, and evaluate whether the impact is too strong to be neglected.  

1) VNF Latency and Throughput: The VNF latency is the time required by a network of VNFs to 
process incoming traffic, which can be evaluated by measuring the time between a unit of traffic 
(such as a packet or a service request) enters the network of VNFs, and the time at which the 
processing of that unit of traffic is completed (e.g., a packet is routed to a destination after 
inspection, and leaves the VNFs; or, a response is provided to the source of a request). The VNF 
throughput considers the rate at which traffic units are successfully processed, e.g., processed 
packets or requests per second, in the presence of faults.  

2) Experimental Availability: Availability is a key aspect of quality of service. According to the TL 9000 
definition for telecommunication systems [10], [11], availability is “the ability of a unit to be in a state 
ready to perform a required function at a given instant in time”. The NFVI and its VNFs can become 
unavailable because of faulty components, causing service disruptions such as user-perceived 
outages, data losses and corruptions. It must be noted that, in general, availability cannot be 
predicted in probabilistic terms by the sole application of fault injection. Fault injection specifically 
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focuses on evaluating the reaction of a system given that a fault already occurred. The availability 
also depends on the probability of occurrence of faults, which relies on other factors beyond the 
possibilities of fault injection and of our evaluation methodology, such as the reliability of individual 
components. 

3) Risk Score: The Risk Score (RS) provides a brief and concise measure of the impact of faults within 
the NFVI, such as the risk of experiencing service unavailability and performance failures. We take 
into account several factors in the evaluation of risk, including:  

a. the type of service and its criticality (in terms of number of users and importance of the 
service for the users); 

b. the impact of faults on the service as perceived by the end-users; 
c. the relative frequency of occurrence of faults.  

 
The Risk Score summarizes these factors, to provide an indication of risk for system designers, and 
to guide further analysis and improvements. In particular, the higher is the RS, the higher is the risk 
of service failures and, consequently, the worse is the capability of the underlying NFVI infrastructure 
to tolerate faults and assure service availability.  
The Risk Score is a weighted sum of the number of service failures in fault injection experiments. It is 
defined as:  

  

3.2.2.2 Fault Model  

Fault injection in distributed systems encompasses two main fault categories: faults affecting I/O 
components (e.g., virtual network and storage), and faults affecting computational components (e.g., virtual 
CPUs and virtual memory). Faults in virtualized infrastructures (including hardware faults in OTS equipment, 
and software and configuration faults in the virtualization layer) mostly manifest as disruptions in I/O traffic 
(e.g., the transient loss or corruption of network packets, or the permanent unavailability of a network 
interface) and erratic behavior of the CPU and memory subsystems (in particular, corruption of instructions 
and data in memory and registers, crashes of VMs and physical nodes, and resource leaks).  

These types of faults can be injected by emulating their effects on the virtualization layer. In particular, I/O 
faults and Compute faults (Fig. 2) can be emulated, respectively, by deliberately injecting I/O losses, 
corruptions and delays, and by injecting code and data corruptions, by forcing the termination of VMs and of 
their hosting nodes, and by introducing CPU and memory “hogs” (i.e., tasks that deliberately consume CPU 
cycles and allocate memory areas in order to cause resource exhaustion). Faults can be injected either in a 
specific VM (e.g., traffic from/to a VM), or in an NFVI node (affecting the hypervisor and all VMs deployed on 
the node).  
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Figure	  2.	  Faultload	  for	  the	  dependability	  evaluation	  of	  NFVIs.	  	  

3.2.2.3 Workload  

During fault injection tests, the NFVI has to be exercised using a workload. In order to obtain reasonable and 
realistic results from fault injection, these workloads should reflect the workloads that VNFs will face in 
production: in this way, the experiments will provide a realistic picture of performance and dependability of 
the NFVI. Realistic workloads are typically generated using load generators and performance benchmarking 
tools. Our dependability benchmarking methodology is not tied to a specific choice of workload.  

3.2.2.4 Case study and results 

To show the application of the dependability evaluation methodology, we perform an experimental analysis 
of a virtualized IP Multimedia Subsystem (IMS) deployed over an NFVI.  

The VNFs running on the NFVI under evaluation are from the Clearwater project [12], [13], which is an open-
source implementation of an IMS for cloud computing platforms. Figure 8 shows the components of the 
Clearwater IMS that are deployed on the NFVI testbed. They are:  

• Bono: the SIP edge proxy, which provides both SIP IMS Gm and WebRTC interfaces to clients.  
• Sprout: the SIP registrar and authoritative routing proxy, and handles client authentication.  
• Homestead: component for retrieving authentication credentials and user profile information.  
• Homer: XML Document Management Server that stores MMTEL service settings for each user.  
• Ralf: component that provides billing services  

 
The goal of this analysis is to provide examples of results that can be obtained from fault injection. We 
consider a commercial virtualization platform (the VMware ESXi hypervisor) running real-world, open-source 
NFV software. In these experiments, we adopt fault injection to analyze:  

• Whether degradations/outages are more frequent or more severe than reasonable limits; 
• The impact of different types of faults, to identify the faults to which the NFVI is most vulnerable;  
• The impact of different faulty component, to find the components to which the NFVI is most sensitive. 

  
The case study on the IMS showed how the methodology can point out dependability bottlenecks in the 
NFVI and guide design efforts. In particular, we have found these fundamental insights: 

Network frame receive/transmit 

Corruption Drop Delay 

Host VM Host VM Host VM 

Storage block reads/write 

Corruption Drop Delay 

Host VM Host VM Host VM 

I/O faults 

Compute faults 

Hogs Crash Code corruption Data corruption 

CPU Memory Host VM Host VM Host VM 



Training	  and	  Research	  Activities	  Report	  –	  First	  Year	  

PhD	  in	  Information	  Technology	  and	  Electrical	  Engineering	  –	  XXIX	  Cycle	  

Luigi	  De	  Simone	  

	  

Università	  degli	  Studi	  di	  Napoli	  Federico	  II	  

	   9	  

• Faults have a strong impact on availability! Compute faults and Sprout-VM faults have the 
strongest impact; 

• Over than 10% of requests exhibit a latency much higher than 250ms; 
• The overall risk score (55%) is quite high and reflects the strong impact of faults on the 

infrastructure; 
• In our experiments, automated VM recovery was too slow and availability resulted low. 

 
3.2.3 Quantitative Assessment of Isolation Properties in Container-based Virtualization  

During my second year I have also started studies about application of new emerging virtualization 
technology known as container-based virtualization, within the DEEDS research group at TU Darmstadt, 
under the supervision of Prof. Neeraj Suri. 

Virtualization technologies are the core enabler of cloud computing. Several techniques [14], [15] are 
currently available, and the most important ones are:  

• Full-virtualization;   
• Para-virtualization;   
• Container-based virtualization. 

 
Container-based virtualization, also called Operating System-level virtualization, allows running multiple 
appliances without hardware virtualization. Resource virtualization in OSs is an old idea, based on the 
concept of process. The idea behind container-based virtualization is to enhance the abstractions of OS 
processes (now called containers), by extending the (host) OS kernel. In container-based virtualization, a 
container has its own virtual CPU and virtual memory (like in traditional OS processes). In this kind of 
virtualization, it is also added abstractions for a virtual filesystem (i.e., the container perceives a filesystem 
structure that is different than the host’s), virtual network (i.e., the container sees a different set of networking 
interfaces), IPC, PIDs, and users management. These virtual resources are distinct for each container in the 
system.  

We are witnessing an increasing use of container-based virtualization in cloud infrastructures. Examples are 
Google [16], [17], Amazon [18], and Microsoft [19], which are already providing cloud services running on 
containers. Containers are expected to be fast, thus providing high performance, since there is no extra 
overhead due to emulation of devices. Moreover, containers make virtualization more manageable, since 
creating and moving containers is easier and faster. NFV infrastructures require extremely low packet 
processing overheads, controlled latency, automatic recovery from faults, and extremely high availability 
(99.99% or higher); container-based virtualization can be one of the more suitable solution for NFV. 

In general, virtualization has to address the critical problem of guarantee the isolation among virtual 
instances [20]. In the  more general sense, isolation means the fact that something is independent and 
disentangled to the behaviors of other things. Thus, the virtualization layer has to be in complete control of 
virtualized resources, and applications running on a virtual domain must have the illusion to be completely 
isolated from others. Unlike full-virtualization, in container-based virtualization, the “virtualization surface” 
(i.e., the isolation boundary) between virtual domains and the host is minimal, thus the likelihood of having 
interferences (e.g., failures in a container may affect the entire infrastructure) can be very high!  

The isolation property has two main flavors:  

• Performance isolation: the capability of isolating or limiting the impact of resource consumption 
(e.g., CPU, network, disk) of container on the performance degradation of the other containers, and 
the host kernel; 
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• Memory isolation: the capability of isolating code and data between containers, and between 
containers and the host kernel.  
 

Title: Reliability evaluation in device drivers 

3.2.4 Run-Time Monitoring for I/O Protocol Violations in Storage Device Drivers  

Another important piece of my research is about reliability in device drivers. It is well known that device 
drivers are the most bug-prone part of the OS [21], [22], [23], and represent a critical component of every 
storage stack in IT systems. Bugs affecting storage device drivers include the so-called protocol violation 
bugs, which silently corrupt data and commands exchanged with I/O devices. Protocol violations are very 
difficult to prevent, since testing device driver is notoriously difficult. To address them, we present in [P5] a 
monitoring approach for device drivers (MoIO) to detect I/O protocol violations at run-time. The approach 
infers a model of the interactions between the storage device driver, the OS kernel, and the hardware (the 
device driver protocol) by analyzing execution traces. The model is then used as a reference for detecting 
violations in production. The approach has been designed to have a low overhead and to overcome the lack 
of source code and protocol documentation. We show that the approach is feasible and effective by applying 
it on the SATA/AHCI storage device driver of the Linux kernel, and by performing fault injection and long-
running tests. 
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4. Products 
 

In this second year, I have produced the following products. 
 
4.1 Publications 
 
Conference Paper 

[P4] Domenico Cotroneo, Luigi De Simone, Antonio Ken Iannillo, Anna Lanzaro, Roberto 
Natella, “Dependability Evaluation and Benchmarking of Network Function Virtualization 
Infrastructures”, at 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1 – 9, 13-
17 April 2015 London, DOI: 10.1109/NETSOFT.2015.7116123 
BEST PAPER AWARD 

[P5] Domenico Cotroneo, Luigi De Simone, Francesco Fucci, Roberto Natella, “MoIO: Run-time 
monitoring for I/O protocol violations in storage device drivers”, at Software Reliability 
Engineering (ISSRE), 2015 IEEE 26th International Symposium on, pp. 472 – 483, 2-5 Nov. 
2015 Gaithersbury, MD, DOI: 10.1109/ISSRE.2015.7381840  

 
5. Activity abroad 

 
During my second year I spent 2 months (September 2015 – October 2015) at TU Darmstadt within the 
DEEDS group, under the supervision of Prof. Neeraj Suri. I have started studies about application of new 
emerging virtualization technology known as container-based virtualization, in order to quantitatively assess 
isolation properties from the perspective of dependability. 

6. Tutorship 
 

During the second year I have been teaching assistant for the course of Operating Systems, a.a. 2014/2015. 
Furthermore, I have been MSc thesis co-advisor on topic about verification of fault tolerant mechanisms in 
NFV. 
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