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Probabilistic Short-term Forecasting Methods in Smart Grids

Why forecasting in Smart Grids Why short-term time horizon ' ——
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Electrical distribution systems are evolving towards the new concepts Few-minutes to some-hours forecasts are used in Smart Grids .- & Ullul'l‘ ------- . g 1555 i
of Smart Grids. Their planning and management is a complex task, operation for optimally managing both power generation - Natural Gas I ‘: e
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since non-programmable renewable power plants are characterized by  (unit commitment, dispatching) and load demand (load \ _J
a significant intrinsic randomness due the uncertainty affecting the shedding and switching). = _@®—
corresponding main natural source. Also the Also, short-term forecasts are mandatory in order to timely rid Manager ' _ @~
is affected by uncertainty. cope with power line congestions and to obtain short-term Seeaton 7 | | /  poims
estimation of the reliability of power systems in extreme | e
event conditions, such as extreme wind speeds. e

Backup Gen Sets Thermal / Electrical

Eventually, from an economic point of view, one-day to seven-day
forecasts are used for optimizing electric market participation by
energy producers and consumers.

Solar Photovoltaics

A PROBABILISTIC ENSEMBLE METHOD FOR SHORT-TERM FORECASTING OF PHOTOVOLTAIC POWER INVERSE BURR MODEL FOR EXTREME WIND SPEEDS
Theoretical discussion Theoretical discussion

This research activity dealt with a probabilistic method for the short-term forecasting of photovoltaic (PV)  This research activity dealt with an Inverse Burr (IB) distribution for the

power, based on a competitive ensemble of different base predictors. Three probabilistic methods probabilistic modeling of extreme values of wind speed, together with several
(Bayesian BM, quantile regression QM and Markov chain MM) were selected as base predictors in order to  parameter estimation procedures. The reliability of an IB stress-strength (SS)
obtain an ensemble of the predictive distribution with optimal characteristics of sharpness and reliability. = model was then estimated in maximum likelihood (ML) and Bayesian frameworks.
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PV powers are classified in states that || VIARKOV CHAIN BASE PREDICTOR | @ is the probability p(Sk,[Sh—k;» Sh—2k,); “Kk i=1 l / k / &"3 \4; | //
are assumed independent after the : - : its maximum likelihood estimation is
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ENSEMBLE MODEL Linear pooling may provide over- The over-dispersion of ensemble forecasts was B j+°° 1 — Fy)]dy = Y IB strength model F(x|B,y) = i
dispersed forecasts, e.g., when overcome by minimizing the CRPS ¢, and also — 9o) W)ldy = Y+ x [1 n (%)
Cumulative density functions weights are found by minimizing the the reliability index ¢2in a multi-objective \\ //
of base predictors are continuous ranked probability score (MO) optimization procedure )
L C in a sinel Numerical results
combined in a linear pool (CRPS, a proper score) in a single- .
N objective (SO) procedure min [¢1(Fipg, Wi, - wiy), ¢2N(FLPEh,k|W1' wy )] The Inverse Burr is compared to existing extreme-value distributions (Gumbel
F P,) = z w, - E, . (P) . B . . i . .
LPE ; (Fh 2" o W N crps, (5, = J [F,(P,) — H(P, — PO)J - dP, s.t. w, =0 vn, ng _ 1 and Inverse Weibull) in terms of Kolmogorov Sr.nl.rno.v and Chi-square tests for
n=l seven datasets. The Inverse Burr was the best fit in five cases.
. Dataset and Test statistics for estimated distributions
Numerical results estimation Gumbel Inverse Weibull Inverse Burr
. _ . g eqe . procedure | KS-stat | y?-stat | y?-dof | KS-stat | y?-stat | y?-dof | KS-stat | y?-stat | y?-dof
The results of one-month forecasts made for a lead time k=1 hour are shown. Reliability diagrams and T T o o 5 Tomr e 5 T o T
PIT histograms provide information on the calibration of forecasts. DI-ME | 0144 | 3034 | 2 | 0185 | 7810 | 3 | 0118 | 6713 | 3
100 , | | | 00— ! ! ! 5 ! . | TR | D1-QE 0.148 1.852 1 0.170 2.731 1 0.125 0.121 1
The absolute bias (AB), mean | 4 Sample size
N=1 N=3 | N=10 | N=15 | N =30
square error (MSE) and mean [z, 0.0819 | 0.0260 | 0.0078 | 0.0040 | 0.0025
: AB -0.0001 | 0.0001 | 0.0001 | -0.0003 | -0.0000
absolute relative error (MARE) MSE,. 0.0495 | 0.0097 | 00018 | 0.0011 | 0.0005
: MSE 0.0003 | 0.003 | 0.0003 | 0.0002 | 0.0002
for synthetic samples proved EFFy o 177.2784 | 35.8229 | 6.9842 | 44339 | 2.3344
U i i i i ; ; ; ; = = = = ; ; ; | the efficiency (EFF) of the MARE,,, ; 15160 07094 | 03424 | 02714 | 0.1899
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Bayesian reliability estimation, [grr,,,, 103314 | 48930 | 24441 | 1.9818 | 1.4773
Ind BM MM QM PM LPE-MO LPE-SO :
Ensemble Mweight[] MMweight[] OMweightl] ——mo Q specially for small datasets.
method CRPS (b1 [KW] 650 682 572 1063 553 5.24
LPE - MO 0.060 0.265 0675 Reliability index b, [%] 408 383 434 1046 484 6.12
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Next year developments: Estimation algorithms for parameters and  Forecasting of dynamic thermal
Probabilistic ensemble of confidence intervals of mixture probability rating of Smart Grids components Contacts
deterministic base predictors ~ density functions - Pasquale De Falco
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