
Marco Castelluccio
Tutor: Carlo Sansone – co-Tutor: Luisa Verdoliva

XXXI Cycle - III year presentation

Improving software engineering
processes using machine learning

and data mining techniques



Background

• MSc with honour in Computer Engineering at
University of Naples Federico II

• Senior Software Engineer at Mozilla

Marco Castelluccio 2



Collaborations

• SWAT (SoftWare Analytics and Technologies) 
team at Ecole Polytechnique de Montréal 

• ZEST (Zurich Empirical Software engineering 
Team) team at University of Zurich

Marco Castelluccio 3



Credits

Marco Castelluccio 4

Year Modules Seminars Research Tot.

1 21 (20) 7 (5) 35 (35) 63 (60)

2 16 (9) 12 (6) 45 (42) 73 (60)

3 3 (0) 10 (5) 51 (55) 64 (60)

Tot. 40 (30-70) 29 (10-30) 131 (80-140) 180 (180)



Firefox

5



Firefox

• Releases every 6 to 8 weeks

• One of the biggest and most complex
software, with a little bit of legacy code and 
tech debt (Netscape was opensourced 20 
years ago!)

• 399’221 commits from 5’356 unique
contributors, around 18’000’000 lines of code

• Around 60’000 commits last year, from 1’267 
unique contributors

Marco Castelluccio 6

Misc Stats



Firefox

Marco Castelluccio 7

Languages



Firefox

Marco Castelluccio 8

Patches landed in last releases



Firefox

• Tests executed on every commit, under 
several configurations and on different
platforms

• The average execution time of all tests is 1’506 
hours

• In November 2017, 8’319’189 tasks, 299,8 
machine years, 927’333 machines

Marco Castelluccio 9

CI



Firefox

Marco Castelluccio 10

CI



Automatic understanding groups of 
crashes for finding correlations

Marco Castelluccio 11

ESEC/FSE 2017



Automatic understanding groups of crashes for finding 
correlations

Marco Castelluccio 12

Crash-analysis workflow



• Socorro is the crash-reporting system
deployed at Mozilla

• It handles around 200’000 reports per day
from multiple Firefox builds

• It uses a simple clustering algorithm to group 
crash reports (top method of the stack trace), 
generating thousands of clusters (however, 
most of them are really small, with the first 
200 clusters containing 55% of reports)

Marco Castelluccio 13

Socorro

Automatic understanding groups of crashes for finding 
correlations



Marco Castelluccio 14

Socorro – Crash report fields

Automatic understanding groups of crashes for finding 
correlations



15

Socorro – Crash report stack trace

Marco Castelluccio

Automatic understanding groups of crashes for finding 
correlations



16

Socorro – Architecture overview

Marco Castelluccio

Automatic understanding groups of crashes for finding 
correlations



17

• Many studies focused on improving the bucketing of 
crash reports. My focus has been on how to 
automatically describe the buckets’ properties in the 
most interesting way for developers.

Marco Castelluccio

Automatic understanding groups of crashes for finding 
correlations



18

• Understanding what makes a crash group
meaningfully different than other groups is very
often useful for debugging (sometimes even enough
for fixing the crash, e.g. by blocklisting a certain gfx
card).

Marco Castelluccio

Automatic understanding groups of crashes for finding 
correlations



19

• The algorithm is based on the STUCCO data mining
algorithm.

Marco Castelluccio

Automatic understanding groups of crashes for finding 
correlations



• The tool implementing the algorithm was 
deployed on Socorro

• Evaluation on a set of bugs where developers 
used the tool in production

Marco Castelluccio 20

Results

Automatic understanding groups of crashes for finding 
correlations



21

Deployment on Socorro

Marco Castelluccio

Automatic understanding groups of crashes for finding 
correlations



22

Results

Marco Castelluccio

Automatic understanding groups of crashes for finding 
correlations



• Clusters containing unrelated crashes: more difficult 
to find defining properties. E.g. crashes related to the 
JavaScript JIT compiler are often wrongly clustered 
together. The correlation tool is only able to tell that 
the group is related to the JIT.

• Related crashes split in multiple clusters: more likely 
to find spurious correlations. E.g. there was a crash, 
later diagnosed to be due to concurrency issues, 
happening in different functions according to CPU 
brand/graphics card. This caused the clusters to be 
highly but spuriously correlated with those properties.

Marco Castelluccio 23

Results – How clustering affects results

Automatic understanding groups of crashes for finding 
correlations



• AMD CPU bug: A crash group was found to be correlated with a 
particular family of AMD CPUs. The particular family of AMD CPUs 
in the crash group is affected by a hardware bug, and developers 
were able to find a workaround for it

• Antivirus-related crash: A crash group was found to be correlated 
with a version of an addon of an antivirus suite. In cases like this, 
the tool allows practitioners to act quickly and simply block the 
addons (or modules) that cause problems, while contacting the 
vendors to solve the problem in the long term

• Crash without AdBlock: A crash group was more common to users 
without ad-blocking addons, often happening with a very famous 
Flash game. We believe the crash was caused by some advertising 
network serving particular advertisement that would cause the 
browser to crash. 

Marco Castelluccio 24

Results – Interesting examples

Automatic understanding groups of crashes for finding 
correlations



• Analyzing crash groups in an automated manner 
can help:
– Removing manual analysis burden from developers;
– Finding properties that would have been really 

difficult to find with manual analysis;
– Giving clues in the characterization of crashes. 

• The results of the correlations tool could be 
useful in the future for:
– Improving the clustering algorithm;
– Suggesting hardware/software configurations likely to 

fail to QA and volunteers.

Marco Castelluccio 25

Conclusions

Automatic understanding groups of crashes for finding 
correlations



Empirical study of the uplift process at 
Mozilla

Marco Castelluccio 26

ICSME 2017
+

EMSE



Empirical study of the uplift process at Mozilla

• In rapid-release development processes, high-
value patches (fixing high volume crashes, 
introducing important features, fixing widespread 
regressions, etc.) are often promoted directly 
from the development branch (Nightly) to a 
stabilization channel, skipping one or more 
channels.

• Developers are requesting the uplifts.

• Release managers are in charge of the uplift 
process.

Marco Castelluccio 27

What is an uplift?



• Collaboration with the École Polytechnique de 
Montréal.

• The aim is to understand the properties of uplift vs 
normal changes; understand which uplifts introduced
bugs and why; with the ultimate goal of building a 
model to predict the riskiness of an uplift.

Marco Castelluccio 28

Empirical study of the uplift process at Mozilla



Marco Castelluccio 29

What is an uplift?

Empirical study of the uplift process at Mozilla



• Focused on the timespan between September 
2014 to August 2016, as it was a steady 
period, ignoring Pocket-related uplifts (since 
they were a one-time event). Total of ~40000 
bugs, ~7000 uplifts.

Marco Castelluccio 30

Methodology

Empirical study of the uplift process at Mozilla



Marco Castelluccio 31

Methodology

Empirical study of the uplift process at Mozilla



• Keyword-based heuristic to identify bugs vs features 
(categorization that is not available in Bugzilla)

• SZZ algorithm to identify fault-inducing patches
• Collected several metrics (developer/reviewer 

experience and participation; uplift process; sentiment; 
code complexity) and measured the difference 
between them in fault-inducing vs non-fault-inducing 
uplifts

• Manually analyzed a representative set of uplifts and 
faults to categorize them

• Interviewed release managers for their ideas on the 
uplift process and their take on our results

Marco Castelluccio 32

Methodology

Empirical study of the uplift process at Mozilla



Marco Castelluccio 33

Methodology

Empirical study of the uplift process at Mozilla



• What are the characteristics of patches that are uplifted?

• We observed that most patches are uplifted to resolve 
wrong functionalities or crashes.

• Rejected uplift requests required longer decision time than 
accepted requests. We attribute this difference to the high 
complexity of these rejected patches (since complex 
patches require longer time for risk assessment).

• Release managers tend to trust patches that concern 
certain specific components, and–or that are submitted by 
certain specific developers.

Marco Castelluccio 34

Results

Empirical study of the uplift process at Mozilla



• How effective are uplift operations?

• 4% of the subject uplifts did not effectively address the 
problems but were later reopened, duplicate or cloned 
into another issue, or required additional uplifts to fix 
the issue.

• Two major root causes were observed from the 
ineffective uplifts: the uplifts only partially fixed the 
issues or caused regressions.

• Higher proportion of ineffective uplifts were detected 
from the Release channel than from Aurora and Beta.

Marco Castelluccio 35

Results

Empirical study of the uplift process at Mozilla



Marco Castelluccio 36

Ineffective uplift types

Empirical study of the uplift process at Mozilla



Marco Castelluccio 37

Ineffective uplift numbers

Empirical study of the uplift process at Mozilla



Marco Castelluccio 38

Root causes of ineffective uplifts

Empirical study of the uplift process at Mozilla



• Code complexity measures were found to be 
meaningfully different between fault-inducing 
and non-fault-inducing uplifts, in particular 
fault-inducing changes were more likely to 
have higher complexity (the size of the 
changes in terms of changed lines, ”code 
churn” in the table, was the main factor).

Marco Castelluccio 39

Results

Empirical study of the uplift process at Mozilla



Marco Castelluccio 40

Results

Empirical study of the uplift process at Mozilla



Marco Castelluccio 41

Results

Empirical study of the uplift process at Mozilla



Marco Castelluccio 42

Results

Empirical study of the uplift process at Mozilla



Marco Castelluccio 43

Reasons for uplift

Empirical study of the uplift process at Mozilla



Marco Castelluccio 44

Reasons for uplift in Beta

Empirical study of the uplift process at Mozilla



Marco Castelluccio 45

Reasons for uplift in Release

Empirical study of the uplift process at Mozilla



• Performance uplifts are quite risky and so they 
should be considered more carefully for uplift. 

• Uplifts to fix incorrect functionality or web 
compatibility problems are more likely non-
fault-inducing in release than in beta. A 
possible explanation is that release uplifts are 
tested more thoroughly.

Marco Castelluccio 46

Reasons for uplifts

Empirical study of the uplift process at Mozilla



Marco Castelluccio 47

Classification of faults introduced by uplifts

Empirical study of the uplift process at Mozilla



Marco Castelluccio 48

Faults introduced by uplifts

Empirical study of the uplift process at Mozilla



Marco Castelluccio 49

Classification of faults introduced by uplifts

• The results show that a sizeable number of 
faults introduced by uplifts could potentially 
be prevented by static analysis / safer 
languages.

• Semantic and third-party faults can only be 
prevented by more thorough testing.

Empirical study of the uplift process at Mozilla



Marco Castelluccio 50

Number of uplifts per component (Beta)

Uplifts are more common in specific components.

Empirical study of the uplift process at Mozilla



Marco Castelluccio 51

Faults-proneness per component (Beta)

Uplifts in some components are more likely to cause regressions.

Empirical study of the uplift process at Mozilla



Marco Castelluccio 52

Faults-proneness per developer (Beta)

Uplifts requested by different developers have different probabilities of causing 
regressions.

Empirical study of the uplift process at Mozilla



• Are regressions caused by uplift more severe than the 
bugs that were fixed with the uplift?

• Through a manual analysis, we observed that 37.5% of 
the Beta fault-inducing uplifts caused a “more severe 
regression”, i.e., regression that is more severe than 
the problems they aimed to address.

• No “more severe regression” was found from the 
examined Release uplifts, perhaps due to a more strict 
uplift policy and code review process on this channel.

Marco Castelluccio 53

Results

Empirical study of the uplift process at Mozilla



Marco Castelluccio 54

Whether the regression an uplift caused is more severe than the problem the uplift
aims to address.

Empirical study of the uplift process at Mozilla



Marco Castelluccio 55

Uplift -> Regression transitions (Beta)

Empirical study of the uplift process at Mozilla



Marco Castelluccio 56

Uplift -> Regression transitions (Release)

Empirical study of the uplift process at Mozilla



• Could some of the regressions have been prevented 
through more extensive testing on the channels?

• We considered regressions to be possibly preventable if 
they were reproducible not only by the issue reporter and 
were found either on a widely used 
feature/website/configuration or via Mozilla’s telemetry

• We manually examined a sample of regressions due to Beta 
and Release uplifts

• 25% of the regressions due to Beta uplifts and 30% of the 
regressions due to Release uplifts could have been possibly 
prevented.

Marco Castelluccio 57

Results

Empirical study of the uplift process at Mozilla



Marco Castelluccio 58

By whom a regression was reproducible

Empirical study of the uplift process at Mozilla



Marco Castelluccio 59

How regressions were found

Empirical study of the uplift process at Mozilla



Marco Castelluccio 60

Whether the regressions caused by an uplift were reproducible

Empirical study of the uplift process at Mozilla



Marco Castelluccio 61

How the regressions caused by uplifts were found

Empirical study of the uplift process at Mozilla



Understanding Flaky Tests:
Relevance, Nature, and Challenges

Marco Castelluccio 62



Marco Castelluccio 63

• Around 7’000 tests per week fail
intermittently

• They sneakily decrease the value of the test 
suites

• They decrease developers’ trust in test suites

• They make it more difficult to notice real
regressions

Understanding Flaky Tests:
Relevance, Nature, and Challenges



Understanding Flaky Tests:
Relevance, Nature, and Challenges

Marco Castelluccio 64

• Empirical investigation on software repository 
data (pertaining to 391 software systems)

• A novel dataset of 200 flaky tests classified by 
practitioners who fixed those tests

• The opinions of 120 developers collected in an 
online questionnaire

Overview



Marco Castelluccio 65

• How prominent is test flakiness and how 
problematic is it as perceived by developers?

• The mining study and the collected developers’ 
opinions indicate that flaky tests are rather 
frequent and a non-negligible problem, with 
possibly important consequences on resource 
allocation and scheduling, as well as on the 
reliability of the test suite.

First research question

Understanding Flaky Tests:
Relevance, Nature, and Challenges



Marco Castelluccio 66

• How can the causes of flaky tests be categorized?

• We confirm the existence of seven flakiness types 
revealed by Luo et al.. We discover four 
additional categories, three of which developers 
consider as the most effort-prone types of 
flakiness to deal with. Finally, we provide 
evidence that flaky tests can be also due to 
problems in production code.

Second research question

Understanding Flaky Tests:
Relevance, Nature, and Challenges



Marco Castelluccio 67

Second research question

Understanding Flaky Tests:
Relevance, Nature, and Challenges



Marco Castelluccio 68

• What are the challenges that developers face 
when dealing with flaky tests?

• Reproducing the failing context, understanding 
nature and elements involved in the flakiness, 
and knowing whether the flakiness is originated 
by test or production code are the most serious 
challenges for developers. Moreover, designing 
test code in a proper manner is an additional 
major challenge not mentioned in the reviewed 
academic and gray literature.

Third research question

Understanding Flaky Tests:
Relevance, Nature, and Challenges



An Empirical Study of DLL Injection 
Bugs in the

Firefox Ecosystem

Marco Castelluccio 69



Marco Castelluccio 70

• Between 2015-07-02 and 2017-08-25, out of 
15 Firefox releases, 8 (46, 48, 49, 50, 52, 53, 
55, 56) have been «blocked» because of a bug 
caused by a third-party software.

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem



An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem

Marco Castelluccio 71

• Contact the third-party software developers to 
notify them of the problem

• Try to reproduce the problem

• Try to block the software with a blocklist
addition (which requires a new Firefox build
and shipping an update to users)

Current process



Marco Castelluccio 72

Type of bug

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem



Marco Castelluccio 73

How the bug was resolved

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem



Marco Castelluccio 74

Name of the third-party software

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem



Marco Castelluccio 75

Type of the third-party software

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem



Marco Castelluccio 76

• The majority of them don’t perform any kind
of QA

• They use «hacky» techniques, instead of 
public and vetted APIs, to inject their code in 
other processes

Survey with third-party software developers

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem



Marco Castelluccio 77

• Force developers to perform QA in order to be 
allowed in the whitelist

• Remove software from the whitelist when it
causes problems

• Offer preferential access to the whitelist for 
software which uses public and vetted APIs

• Improve the APIs to allow additional use cases

Possible solution: blacklist and whitelist

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem



Detecting web compatibility issues 
using CNNs

Marco Castelluccio 78



Detecting web compatibility issues using CNNs

Marco Castelluccio 79

• Automatically detect web compatibility issues

• Automatically detect regressions after large 
refactorings (e.g. recently, after the 
introduction of a new style engine)

• Offer a tool for web developers to 
automatically test their websites for 
compatibility

Objectives



Marco Castelluccio 80

• Issues that present themselves only in a 
certain class of browser/systems (usually due 
to usage of unstable or non-standard APIs, 
implemented by a single browser, or corner 
cases in the specifications, or limited testing, 
or marketing)

Web Compatibility

Detecting web compatibility issues using CNNs



Marco Castelluccio 81

Web Compatibility

Detecting web compatibility issues using CNNs



Marco Castelluccio 82

• The compatibility problem is often in the 
structure of the page, while the content can 
change (e.g. a news site, ads, a carousel, etc.)

Web Compatibility

Detecting web compatibility issues using CNNs



Marco Castelluccio 83

• Collection of a dataset of screenshots using
Selenium

• Training of a Convolutional Neural Network on 
couples of images (one from Firefox, one from 
Chrome) to detect images which are not
compatible

• Use of a Siamese architecture, particularly
suitable to this kind of problems

Overview

Detecting web compatibility issues using CNNs



Marco Castelluccio 84

• Loading of pages from webcompat.com (a 
tracker of web compatibility issues)

• Random selection of elements of the page to 
interact with (depth first search), in an 
attempt to reproduce problems

• Repetition of ^ multiple times per day, on 
different days (to «teach the network» that
some web sites are compatible even if their
content changes)

Overview

Detecting web compatibility issues using CNNs



What Makes a Code Change Easier to 
Review

Marco Castelluccio 85

ESEC/FSE 2018



Marco Castelluccio 86

• Interested in finding what makes code 
easy/difficult to review

• Developed and deployed an addon on Mozilla 
review tools (at the moment, four different 
systems...) to collect feedback about patches 
from reviewers

What Makes a Code Change Easier to Review



Marco Castelluccio 87

What Makes a Code Change Easier to Review



What Makes a Code Change Easier to Review

Marco Castelluccio 88

• Interviewed developers primarily focus on 
three aspects for reviewability:
– code churn;

– change description;

– commit history

• Surprisingly, test inclusion does not play a 
significant role in reviewability

• The connection between reviewability and 
acceptance is weak

Findings



Marco Castelluccio 89

• Interviewed developers primarily focus on 
three aspects for reviewability:
– code churn;

– change description;

– commit history

• Surprisingly, test inclusion does not play a 
significant role in reviewability

• The connection between reviewability and 
acceptance is weak

Findings

What Makes a Code Change Easier to Review



Publications

• M. Castelluccio, G. Poggi, C. Sansone, L. Verdoliva –
Land Use Classification in Remote Sensing Images by 

Convolutional Neural Networks –
https://arxiv.org/abs/1508.00092

• M. Castelluccio, G. Poggi, C. Sansone, L. Verdoliva –
Training Convolutional Neural Networks for Semantic 
Classification of Remote Sensing Imagery –
JURSE2017 (submitted)

Marco Castelluccio 90

https://arxiv.org/abs/1508.00092


Publications

• M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi –
Automatically analyzing groups of crashes for finding 
correlations – Proceedings of the 2017 11th Joint 
Meeting of the European Software Engineering 
Conference and the ACM SIGSOFT Symposium on the 
Foundations of Software Engineering (ESEC/FSE 2017)

• M. Castelluccio, L. An, and F. Khomh – Is It Safe to 
Uplift This Patch? An Empirical Study on Mozilla Firefox
– In proceedings of the 33rd International Conference 
on Software Maintenance and Evolution (ICSME 2017). 
Received IEEE TCSE Distinguished Paper Award. Invited 
for publication on “Empirical Software Engineering” 
journal.

Marco Castelluccio 91



Publications

• A. Ram, A.A. Sawant, M. Castelluccio, and A. Bacchelli –
What Makes A Code Change Easier to Review? An 
Empirical Investigation On Code Change Reviewability –
Proceedings of the 2018 26th ACM Joint European 
Software Engineering Conference and Symposium on 
the Foundations of Software Engineering (ESEC/FSE 
2018)

• L. An, F. Khomh, S. McIntosh, and M. Castelluccio –
Why Did This Reviewed Code Crash? An Empirical 
Study of Mozilla Firefox – The 25th Asia-Pacific 
Software Engineering Conference (APSEC 2018)

Marco Castelluccio 92



Publications

• M. Castelluccio, L. An, and F. Khomh – An 
Empirical Study of Patch Uplift in Rapid 
Release Development Pipelines – Empirical 
Software Engineering journal (EMSE)

• M. Eck, F. Palomba, M. Castelluccio, and A. 
Bacchelli – Understanding Flaky Tests: 
Relevance, Nature, and Challenges – ICSE2019 
(submitted)

Marco Castelluccio 93



Publications

• L. An, M. Castelluccio, and F. Khomh – An 
Empirical Study of DLL Injection Bugs in the 
Firefox Ecosystem – EMSE (submitted)

Marco Castelluccio 94



Questions

Marco Castelluccio 95



Previous Studies on Urgent Patches

● S. Hassan, W. Shang, and A. E. Hassan, “An 
empirical study of emergency updates for top 
android mobile apps”, Empirical Software 
Engineering

● D. Lin, C.-P. Bezemer, and A.E. Hassan,“Studying 
the urgent updates of popular games on the 
steam platform”, Empirical Software 
Engineering

● M. T. Rahman and P. C. Rigby, “Release 
stabilization on linux and chrome”, IEEE 
Software

None of these studies has 
empirically investigated how 
urgent patches affect software 
quality in terms of fault-
proneness 



Case Study Design - Subject System

Mozilla Firefox because:

● Mozilla is the most studied system for the rapid release problem
● Mozilla’s uplift data is publicly available
● One of our authors works at Mozilla and can easily interview Mozilla 

release managers



Case Study Design - Research 
Questions

RQ1: What are the characteristics of patches that are uplifted?

RQ2: What are the characteristics of uplifted patches that 
introduced faults in Mozilla Firefox?

We will quantitatively and 
qualitatively answer both 
questions



Case Study Design - Analysis Overview

SZZ 
algorithm

Keyword: “approval-
mozilla-*”



Case Study Design 
(Quantitative Analysis - Metrics)

Experience & 
participation
developer experience, 
reviewer experience, 
comment number, 
comment words, review 
duration

Uplift process
landing delta, response 
delta, release delta

Code complexity
patch size, test patch size, 
prior changed times, LOC, 
McCabe, function number, 
max. Nesting, comment 
ratio, module number

Sentiment
developer sentiment, 
module owner 
sentiment

Social network 
analysis
PageRank, 
betweenness, 
closeness



Case Study Design 
(Quantitative Analysis - Statistical Tests)

We use the Mann-Whitney U test (α = 0.05) to 
investigate whether there is a statistically 
significant difference between a patch that was 
uplifted and a patch that was not uplifted (RQ1), 
and whether there is a statistically significant 
difference between a faulty uplifted patch and a 
clean uplifted patch (RQ2).

For the results with statistically significant 
difference, we will use cliff’s delta to measure the 
magnitude of the difference (i.e., effect size).



Case Study Design 
(Qualitative Analysis - RQ1)

Based on a random sampling, we manually examine and 
classify the reasons why developers uplift patches in the 
Beta and Release channels.

We interview Mozilla release managers on the following 
questions:

1) “Which factors do you take into account when 
deciding about an uplift?”

2) “Are there differences in how you handle uplifts in 
different channels, and what are the differences?”

3) “How do you decide which developers you can trust?”



Case Study Design 
(Qualitative Analysis - RQ2)

Based on a random sampling, we manually examine 
and classify the root causes of uplifted patches that 
lead to faults in the Beta and Release channels.

We interview Mozilla release managers on the 
following question:

“What are the characteristics of the fault-
introducing patches that you are not currently 
taking enough into account but could be 
considered in the future?”



Results - RQ1 (statistical tests)

For all of the Aurora, Beta, and Release channels, 
uplifted patches have significant shorter response 
delta (with small effect size) than other patches.

Release managers’ feedback: “when I reject 
something, I won’t make the call immediately. I 
will think about it before doing it, in case I 
change my mind or new facts are coming in the 
equation”.

Other results are channel dependent.



Results - RQ1 (uplift reason, Beta 
channel)



Results - RQ1 (uplift reason, Release 
channel)

In both channels, developers uplift 
patches due to wrong functionality, 
crash, vulnerability, web 
incompatibility, and introducing new 
features.

Faulty uplifts are often 
used to address wrong 
functionality, crashes, 
vulnerabilities, and 
incompatibilities



Results - RQ1 (release manager 
interview)

“Which factors do you take into account when 
deciding about an uplift?”

Release managers said that they will consider the 
importance of the issue, risk associated with the 
patch, timing of the uplift in stabilization cycles, 
and verification of the path.



Results - RQ1 (release manager 
interview)

“Are there differences in how you handle uplifts in 
different channels, and what are the differences?”

After the middle point of the Beta cycle, release 
managers only accept patches fixing high security 
issues, high volume crashes, severe recent 
regressions, severe performance issues or 
memory leaks.



Results - RQ1 (release manager 
interview)

“How do you decide which developers you can 
trust?”

Release managers mentioned:

● When they seem really overconfident or aren’t 
telling me the whole story I lose some trust

● Some developers are taking a lot of risks, some 
other less and are super reactive to fix potential 
fallout



Results - RQ2 (statistical tests)

For all of the Aurora, Beta, and Release channels, 
fault-introducing uplifts have significantly larger 
patch size (with a small effect size) than clean 
uplifts.

Other results are channel dependent.



Results - RQ2 (root causes of faulty 
uplifts)

Semantic and memory 
errors are major causes of 
fault-introducing uplifts



Results - RQ2 (release manager 
interview)

“What are the characteristics of the fault-introducing 
patches that you are not currently taking enough into 
account but could be considered in the future?”

All the release managers agreed that it would be 
beneficial for them to have more detailed information 
about the complexity of the targeted patches and 
more information about the history of the 
components involved in these patches.



Conclusion

● Patch uplift allows to promote features or bug fixes 
directly from development channel to a stabilization 
channel.

● Patch uplift sometimes lead to faults.

● Software organizations can apply (or enhance their effort 
of using) static analysis tools to prevent memory-related 
faults.

● Reviewers and release managers should more carefully 
inspect uplifts that address: wrong functionality, crashes, 
vulnerabilities, and incompatibilities.

● Reviewers should make more effort on inspecting 
potential semantic faults. 


