iNFDHMATIDN tecHNOLOGY
eLECTRICALEGeNGINEERING

Marco Castelluccio

Tutor: Carlo Sansone — co-Tutor: Luisa Verdoliva
XXXI Cycle - lll year presentation

Improving software engineering
processes using machine learning
and data mining techniques

' FEDERICO 1]

ReY

,A
1 A
S
LS

O "a
!
4 5
-
N\ 120 6]
p A AN

Background

e MSc with honour in Computer Engineering at
University of Naples Federico Il

e Senior Software Engineer at Mozilla

Marco Castelluccio

Collaborations

 SWAT (SoftWare Analytics and Technologies)
team at Ecole Polytechnique de Montréal

e ZEST (Zurich Empirical Software engineering
Team) team at University of Zurich

Credits

s Lo | e
21 (20) 7 (5) 35 (35) 63 (60)
2 16 (9) 12 (6) 45 (42) 73 (60)
3 (0) 10 (5) 51 (55) 64 (60)

- 40 (30-70) | 29 (10-30) | 131 (80-140) | 180 (180)

iNFD_FIMATIDN tECHNOLOGY
eLECTRICALEeNGINEERING

Firefox

Firefox
Misc Stats

Releases every 6 to 8 weeks

One of the biggest and most complex
software, with a little bit of legacy code and
tech debt (Netscape was opensourced 20
years ago!)

399'221 commits from 5’356 unique
contributors, around 18°000°000 lines of code

Around 60’000 commits last year, from 1'267
unique contributors

Language

+
+

JavaScript

T
=
=
=

[l

o]
c
a

Assembly

]
LA
L

Autoconf

shell script

=
=
=

Objective-C

Make

OpenGL Shading

Perl
MS5IS

CMake

. TeX/LaTeX

DOS batch script

Automake

Code Lines
5,819,797
3,894,509
2,513,253
2,397,973

201,636
720,947
602,906
327,612
226,062
225,507
104,687
27,896
57,008
49,840
32,369
17,019
10,449
7,301
6,097
3,294

3,212

Comment Lines
1,196,317
1,292,625

124,985
639,359
154,006
16,434
174,837
122,062
24,811
14,186
1,843
16,985
8,665
14,709
34,703
3,358
2,959
2,005
3,230
163

222

Firefox

Languages

Comment Ratio
17.1%
24.9%

4.7%
21.1%

16.1%

1.7%
16.2%
13.2%
22.8%
51.7%
16.5%
22.1%
21.5%
34.6%

4.7%

Marco Castelluccio

Blank Lines
1,002,288
870,402
300,884
400,372
94,367
41,484
157,613
67,216
30,734
32,804
14,112
13,200
11,818
13,116
10,356
3,804
2,195
1,550
752
524

298

Total Lines
8,108,402
6,057,536
2948122
3,437,704
1,050,009

778,865
935,356
516,891
281,607
272,497
120,642
118,090
77,581
77,665
77,428
24181
15,603
10,856
10,079
3,981

3,732

Number of changeset

10000

8000

6000

4000

2000

6753 68
5838

48

49

Firefox

Patches landed in last releases

Version

Marco Castelluccio

56

57

58

Firefox
Cl

* Tests executed on every commit, under

several configurations and on different
platforms

* The average execution time of all tests is 1’506
hours

 In November 2017, 8319°189 tasks, 299,8
machine years, 927333 machines

Firefox

treeherder -

& mozil

entral @

a-inbound @ x

© Active Filters © revision: c1c444858032

Cl

e -

Fiter platforms & jobs

Filters ~ Login

Thu Feb 22, 10:59:00% - dluca@mozilla.com

c1c444858b32 & %9 Bug 1440141 part 3 - Avoid invoking GetAsGecko when old style system is disable
ZcdebB99bbl1 0141 part 2 - Move some headers around. r=dhoibert

f1f351b97729 0141 part 1 K k akeRef to nsStyleContextinlines
TOeb45dTTE37 439076 - F2 st fixes r=jib

337513e93e57 £ 1438076 - P1 - negotiate csrc-audio-level AT header r=

1bBc3al15ba2 1439041 - tighten up RTP sources mochitests r=mjf

966a069151ea &5 Bug 1438521 - Disable Firefox source does job for non-Trunk trees. r=gps
9ffBaaTfdf52 &N Backed out changeset 3237c9532102 (bug 1440034) for breaking Android builds. 1

6cd2792d5ebc & - Correctly handle new expire type (EXPIRE_POLICY) in the Site Id
3237c9532102 8 reporting of annotations at the time of crashes on Gex
b456c43d706b & removed some dead code from ContentParent::initinternal
b7936df55eel - Cleanup HTMLInputElement some
f5fDack6542e - Remove mbers from nsIDOMHTMLInputElement. r=qdot
2e9dledl5T4 40039 - Remove nsIDOMCanvasRenderingContext2D. r=qdot
39320b74891d 0188 - Fix eslint error from adding intl110n to esiint. r=gandaif
647ee549737 9269 - Call RequestRestyle() if the display property is changed from ‘none
eB8657 fae79d 921

eel367eaed50
£28a37787c93
e3bB34c3ac97 &M Bug

...and more B

- Disallow nslFile:: GetNativePath on Windows. r=froydnj
- Stop using Getf
- Stop using GetNativePath in gix/ r=j

tivePath in Telemetry.cpp. r=Dexter

wizel

Linux opt

Linux pgo
Linux debug

Linux Stylo Disabled opt

Linux Stylo Disabled debug

Linux x64 opt

99% - 1 inprogress ViewTests X~

B Cpp GTest Mn N Fxfn-l-e10s(en-Us) Fxfn-r-e10s[tier2](en-Us) M(at1y ¢1 c2 c3) M-e10s(12 345
bc1 be2 bed bed bes beb be7 ol dif dit2 di3 did di5 di6 di7? dté gl gl2 gi3 gpu mdai mda2 mda3) R-e10s
(C R1 R2 R3 R4 RS R6 R7 R8 Ru1 Ru2 Ru2 Rud Ru5 Rué Ru7 Ru8) W-e10s{Wd Wr1 Wr2 Wr3 Wrd Wr5
Wr6 wptl wpt2 wpt3 wptd wpt5 wpté wpt7? wpts wptd wpti0 wpti1 wpti2) X(X1 X2 X3 X4 X5 X6 X7 X8)

B Cpp GTest Mn Fxfn-l-e10s(en-US) Fxfn-r-e10ster 2](en-US) M{123 4567 89 10 11 12 13 14 15%
16allyeclc2c3clglioglgl3gpu) M-e10s(12345678910111213 1415 16 bel be2 be3 bed bes
beé be? bes bed bel0 bell be12 be13 beid be15* bei6 cl gi1 g2 gl3 gpu mdal mda2 mda3) R{C R1 R2
R3 R4 R5 R6 R7 R8) R-e10s(C R1 R2 R3 R4 R5 R6 R7 R8 Ru1 Ru2 Ru3 Rud Rus Ru6 Ru7 Rus) SM(arm
) W(Wr1 Wr2 Wr3 Wrd Wr5 Wr6 wpti wpt2 wpt3 wptd wpt5 wpt wpt? wpts wptd wpt10 wpti1 wpti2)
W-g10s(Wd Wr1 Wr2 Wr3 Wrd Wr5 Wré wpt! wpt2 wpt3 wptd Wpt5 wpt6é wpt7 wpts wpts wpt10 wpt11
wpt12) X (X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12) [iier2](BR)

CppM(atlyele2e3) M-e10s(1 23 45 bel be2 be3 bed bes beé be7 el gl gl2 g3 gpu mdal mda2
mda3) R-e10s(C R1 R2 R3 R4 RS R6 RT R8) W-210s(Wr1 Wr2 Wr3 Wrd Wr5 Wr6 wpt1 wpt2 wpt3 wptd
wpt5 wpt6 wpt7 wpt8 wptd wpt10 wpt11 wpt12)

cppM{atlyctc2e3) Mel10s(123456789 10 11 12 13 14 15[be1 be2 be3 bed bes bes be? bes
be9 be10 beid bei2 bei3 be14* be1s bel6 el gif gl2 gl3 gpu mdal mda2 mda3) R-e10s(C R1 R2 R3 R4
RS R6 R7 R8) W-e10s(Wr1 Wr2 Wr3 Wrd Wr5 Wr6 wpt1 wpt2 wpt3 wptd wpt5* wpté wpt7 wpts wpt9
wpti0 wpti1 wpti2)

B Bb Cpp GTest Mn MnH N S V pfu Fxin-l-e10s(en-Us) Fxfn-r-e10sitier 2](en-US) M{a11y ¢1 c2* ¢3)
M-e10s(1 23 45 be1 be2 be3 bed be5 beb be7 ol dif di2 di3 did di5 dit6 dt7 di8 gl gl2 gi3 gpu h1 h2 h3
h4 h5 mdal mda2 mda3 ss) R-e10s(C R1 R2 R3 R4 RS R6 R7 R8 Rs1 Rs2 Rs3 Rs4 Rs5 Rs6 Rs7 Rs8 Ruft
Ru2 Ru3 Rud Ru5 Ru6 Ru7 Ru8) SM(asan f msan nojit p pkg) SY-e10s(sy) T-e10s(c d g1 a2 g3 g4
g5 h1 h2 o p ps s sp tp tp6) T-e10S[tier2](mm) Tss-e10s(tp6) W-e10s(Wd Wrl Wr2 Wr3 Wrd WS Wr6
wptl wpt2 wpt3 wptd wpt5 wpt6 wpt7 wpt8 wptd wpt10 wpt11 wpt12) X(X1 X2 X3 X4 X5 X6 X7 X8)
cramiter 2](try) mocha(epm) py[tier2](mb mb mb mb mb mch mh mh mh mh mh ml ml mI ml ml mnh
mnh mnh mnh mnh ref term term term term term tg tg tg tg tg try try try try try ves ves ves ves ves)

[tier 2](AB BR TV)

Marco Castelluccio 10

Automatic understanding groups of
crashes for finding correlations

ESEC/FSE 2017

Automatic understanding groups of crashes for finding

correlations
Crash-analysis workflow

Dataset
CLUSTERING
Group 1 Group 2
@ o
lFEATURING
| Y \j
G1 features G2 features Overall features

Marco Castelluccio

12

Automatic understanding groups of crashes for finding
correlations
Socorro

* Socorro is the crash-reporting system
deployed at Mozilla

* |t handles around 200’000 reports per day
from multiple Firefox builds

* |t uses a simple clustering algorithm to group
crash reports (top method of the stack trace),
generating thousands of clusters (however,
most of them are really small, with the first
200 clusters containing 55% of reports)

Automatic understanding groups of crashes for finding
correlations
Socorro — Crash report fields

Name Description

Platform The name of the Operating System.

Platform Version | The detailed version of the Operating System
(e.g. uname -a on Linux).

Addons A list of the addons, with their version, in-
stalled in the Firefox profile.

Modules A list of the modules (DLL files on Windows,
SO files on Linux, dylib files on Mac), with
their version, loaded in the application’s pro-
Cess.

User Comment A (usually brief) comment left by the user at
the time of crashing.

CPU Info Detailed information (vendor, family, model,
stepping, number of cores) about the CPU of
the user.

Adapter Vendor ID | The vendor of the graphics card on the user’s
machine. There are other related attributes
such as Adapter Device ID, Adapter Driver
Version, etc.

Safe Mode A boolean variable that indicates whether
Firefox was running in safe mode.

User Agent Locale | The language of the user.

Marco Castelluccio

Automatic understanding groups of crashes for finding

correlations
Socorro — Crash report stack trace

Frame Module Signature

0 xul.dll mozilla:storage:Service::getSingleton()

1 xul.dll mozilla::storage::ServiceConstructor

2 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const®, nsISupports®, nsID consté&, void**)
3 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const”, nsID const&, void**)

4 xul.dll nsCOMP1r_base::assign_from_gs_contractid(nsGetServiceByContractID, nsID const&)

5 xul.dll nsCOMP1tr<mozIStorageService>::nsCOMPIr<mozIStorageService>(nsGetServiceByContractID)

6 xul.dll nsPermissionManager::OpenDatabase(nsIFile®)

7 xul.dll nsPermissionManager:InitDB(bool)

8 xul.dll nsPermissionManager:Init()

9 xul.dll nsPermissionManager:GetXPCOMSingleton()

10 xul.dll nsIPermissionManagerConstructor

11 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const®, nsISupports®, nsID const&, void**)
12 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const®, nsID const&, void™)

13 xul.dll nsCOMP1r_base::assign_from_gs contractid(nsGetServiceByContractID, nsID consté&)

14 xul.dll nsCOMPtr <nsIPermissionManager>:nsCOMPtr<nsIPermissionManager> (nsGetServiceByContractID)
15 xul.dll mozilla::services::GetPermissionManager()

16 xul.dll mozilla::dom::NotificationTelemetryService::RecordPermissions()

17 xul.dll NotificationTelemetryServiceConstructor

18 xul.dll nsComponentManagerImpl::CreateInstanceByContractID(char const”, nsISupports®, nsID consté&, void™*)
19 xul.dll nsComponentManagerImpl::GetServiceByContractID(char const®, nsID const&, void™*)

20 xul.dll nsCOMP1tr_base::assign_from_gs contractid(nsGetServiceByContractID, nsID consté&)

21 xul.dll nsCOMPtr <nsISupports=>:nsCOMPtr<nsISupports >(nsGetServiceByContractID)

22 xul.dll NS_CreateServicesFromCategory(char const”, nsISupports®, char const®, charlé_t const®)

23 xul.dll nsXREDirProvider::DoStartup()

24 xul.dll XREMain:XRE mainRun()

25 xul.dll XREMain: XRE_main(int, char*® const, nsXREAppData const”)

26 xul.dll XRE_main

27 firefox.exe do_main

28 firefox.exe wmain

29 firefox.exe ~ _ scrt common_main_seh

30 kernel32.dll BaseThreadInitThunk

31 ntdll.dll __RtlUserThreadStart

32 ntdll.dll _RtlUserThreadStart

Marco Castelluccio 15

Automatic understanding groups of crashes for finding
correlations

Socorro — Architecture overview

Build System

strip debug Breakpad symbol
|nfo o dumper

Debugging Information

..-..u..-

ljiJ

Crash! Breakpad client
writes minidump...
Human-readable

...and submits it C
Stack Trace

User's System Crash Collector

Marco Castelluccio 16

Breakpad
minidump
o, Processor

Automatic understanding groups of crashes for finding
correlations

* Many studies focused on improving the bucketing of
crash reports. My focus has been on how to
automatically describe the buckets’ properties in the
most interesting way for developers.

A d Z_
j&* 3
\\‘\\/B —7 [\j

)
& y Crash Reporting System
Crash In f rmation

5- %‘//Eﬂ\@

Marco Castelluccio 17

€LECTRICALEeNGINEERING

Automatic understanding groups of crashes for finding
correlations

* Understanding what makes a crash group
meaningfully different than other groups is very
often useful for debugging (sometimes even enough
for fixing the crash, e.g. by blocklisting a certain gfx

card).

Marco Castelluccio

€LECTRICALEeNGINEERING

18

Automatic understanding groups of crashes for finding
correlations

* The algorithm is based on the STUCCO data mining
algorithm.

&

|30|28|37"22|28|24H41 |3?|34" 7 | g I 5 H32|21|24"68|79|78|
(Agez<20j (Age: 2025) (Age}é%) (Agezﬁo) £admﬁed)z ﬂﬂﬂﬂﬂﬂﬂﬂ)
7 /I \)/;/ fj \\
- -7\, /
- A /

-

Marco Castelluccio

LECTRIC AL eNGINEERING

19

Automatic understanding groups of crashes for finding
correlations

Results

* The tool implementing the algorithm was
deployed on Socorro

* Evaluation on a set of bugs where developers
used the tool in production

Automatic understanding groups of crashes for finding
correlations

Deployment on Socorro

Signature report for mozilla::dom::quota::QuotaManager::ShutdownObserver::Observe

Showing results from 7 days ago to a minute ago.

Summary Aggregations Reports Graphs Bugzilla Comments Build Graph

Product: Firefox v Channel: release

Correlations for Firefox Release

99.19% in signature vs 01.09% overall) address = Ox7c

100.0% in signature vs 05.84% overall) shutdown progress = profile-before-change
95.46% in signature vs 04.72% overall) Module "EFACLli.dll" = true

93.78% in signature vs 03.90% overall) Module "ccvrtrst.dll" = true

95.49% in signature vs 06.29% overall) Module "IPSEng32.dll" = true
92.87% in signature vs 03.84% overall) Module "cclib.dll" = true

95.07% in signature vs 06.53% overall) Module "msvcpll@.dll" = true
95.07% in signature vs 06.74% overall) Module "msvcrllO.dll" = true

(

(

(

(

(93.63% in signature vs 03.90% overall) Module "ccipc.dll" = true

(

(

(

(

(100.0% in signature vs 35.31% overall) reason = EXCEPTION ACCESS VIOLATION READ

Marco Castelluccio

Automatic understanding groups of crashes for finding

correlations
Results

Type Number of bugs
Very useful - results that directly 19

helped fixing the bug.

Compatible — results that were compat- 19

ible with the resolution of the bug, but

were not useful for fixing the bug.

Misleading — results not compatible 3

with the resolution of the bug.

Marco Castelluccio

22

Automatic understanding groups of crashes for finding
correlations

Results — How clustering affects results

* Clusters containing unrelated crashes: more difficult
to find defining properties. E.g. crashes related to the
JavaScript JIT compiler are often wrongly clustered
together. The correlation tool is only able to tell that
the group is related to the JIT.

* Related crashes split in multiple clusters: more likely
to find spurious correlations. E.g. there was a crash,
later diagnosed to be due to concurrency issues,
happening in different functions according to CPU
brand/graphics card. This caused the clusters to be
highly but spuriously correlated with those properties.

Automatic understanding groups of crashes for finding
correlations

Results — Interesting examples

AMD CPU bug: A crash group was found to be correlated with a
particular family of AMD CPUs. The particular family of AMD CPUs
in the crash group is affected by a hardware bug, and developers
were able to find a workaround for it

Antivirus-related crash: A crash group was found to be correlated
with a version of an addon of an antivirus suite. In cases like this,
the tool allows practitioners to act quickly and simply block the
addons (or modules) that cause problems, while contacting the
vendors to solve the problem in the long term

Crash without AdBlock: A crash group was more common to users
without ad-blocking addons, often happening with a very famous
Flash game. We believe the crash was caused by some advertising
network serving particular advertisement that would cause the
browser to crash.

Automatic understanding groups of crashes for finding
correlations

Conclusions

* Analyzing crash groups in an automated manner
can help:

— Removing manual analysis burden from developers;

— Finding properties that would have been really
difficult to find with manual analysis;

— Giving clues in the characterization of crashes.
* The results of the correlations tool could be

useful in the future for:

— Improving the clustering algorithm;

— Suggesting hardware/software configurations likely to
fail to QA and volunteers.

Empirical study of the uplift process at

Mozilla

ICSME 2017
+

EMSE

Empirical study of the uplift process at Mozilla
What is an uplift?

* |n rapid-release development processes, high-
value patches (fixing high volume crashes,
introducing important features, fixing widespread
regressions, etc.) are often promoted directly
from the development branch (Nightly) to a
stabilization channel, skipping one or more
channels.

* Developers are requesting the uplifts.

* Release managers are in charge of the uplift
Orocess.

Empirical study of the uplift process at Mozilla

* Collaboration with the Ecole Polytechnique de
Montréal.

* The aim is to understand the properties of uplift vs
normal changes; understand which uplifts introduced
bugs and why; with the ultimate goal of building a
model to predict the riskiness of an uplift.

LECTRIC AL eNGINEERING

Empirical study of the uplift process at Mozilla

What is an uplift?

Awesomeness
6 weeks lands on mozilla-
central
Stabilize on oz
6 weeks & awesomeness on
urora .
mozilla-central
.. JUPLIFTTOBETA -
Y s v \\
. Even more
6 weeks Stabilize on Beta k Stabilize on N awesomeness on
Aurora :
mozilla-central
""""" vy vy
Stabilize on
| .
6 weeks Release! Stabilize on Beta Aurora
6 weeks Release! Stabilize on Beta
V ____________
6 weeks Release!

Marco Castelluccio

29

Empirical study of the uplift process at Mozilla
Methodology

* Focused on the timespan between September
2014 to August 2016, as it was a steady
period, ignoring Pocket-related uplifts (since
they were a one-time event). Total of ~40000
bugs, ~7000 uplifts.

TR SR ST S S A S A S AR S A A A S A S
SEEESES DSBS D S S S AP S S S S
\Q»Qd‘*“"(“o“*QQ&Q»Q&*‘CJ(“O“*(‘Q\O)

;Ovo I T RS Y S W F RS Y ®
Figure 1: Number of uplifts during each month from July 2014 to August 2016.
Periods with low number of uplifts or not covering all the three channels are
removed.

Empirical study of the uplift process at Mozilla
Methodology

4000 B Aurora
B Beta
3000 I Release
2000
1000
0

Number of uplifts

Figure 2: Absolute number of uplifts per channel.

Marco Castelluccio 31

Empirical study of the uplift process at Mozilla
Methodology

Keyword-based heuristic to identify bugs vs features
(categorization that is not available in Bugzilla)

SZZ algorithm to identify fault-inducing patches

Collected several metrics (developer/reviewer
experience and participation; uplift process; sentiment;
code complexity) and measured the difference
between them in fault-inducing vs non-fault-inducing
uplifts

Manually analyzed a representative set of uplifts and
faults to categorize them

Interviewed release managers for their ideas on the
uplift process and their take on our results

Empirical study of the uplift process at Mozilla
Methodology

|
|
Bua Renositor Identify uplifted Developer &
ug Repository Bug reports — reports — sentlment
(Bugzilla) metrics —» | RQ1
4
S/
q/ Identify fault-
;‘f},’ — | related issues L . Quantitative &
£ Identify fault- o o
= | inducing patches | Qqualitative
€ » > analyses
% \ Extract patches
%\
A\
2\ [
24! » | RQ2
> Source code metrics

Version Control
System
(Mercurial)

Commit logs

Empirical study of the uplift process at Mozilla
Results

What are the characteristics of patches that are uplifted?

We observed that most patches are uplifted to resolve
wrong functionalities or crashes.

Rejected uplift requests required longer decision time than
accepted requests. We attribute this difference to the high
complexity of these rejected patches (since complex
patches require longer time for risk assessment).

Release managers tend to trust patches that concern
certain specific components, and—or that are submitted by
certain specific developers.

Empirical study of the uplift process at Mozilla
Results

How effective are uplift operations?

4% of the subject uplifts did not effectively address the
problems but were later reopened, duplicate or cloned
into another issue, or required additional uplifts to fix
the issue.

Two major root causes were observed from the
ineffective uplifts: the uplifts only partially fixed the
issues or caused regressions.

Higher proportion of ineffective uplifts were detected
from the Release channel than from Aurora and Beta.

Empirical study of the uplift process at Mozilla

Ineffective uplift types

Category

Description

Not fixed

The issue was completely not fixed, ¢.e., the uplifted
patch did not have any effect.

Partially fixed

The issue was only partially fixed, 7.e., the uplifted
patch had an effect but did not completely resolve the
problem.

Need more QA

The uplifted patch had not gone through enough man-
ual verification.

Need more tests

There were no tests added with the uplifted patch,
but they were required.

Diagnostics An uplift was made to gather more data on a problem,
then another uplift was made to actually fix it.
Regressions The uplifted patch caused other defects.

Test failure

The uplifted patch did not pass a certain test.

Build failure

The uplifted patch caused a build error.

Other

Other reasons, e.g., an issue was fixed by an uplift,
but then appeared again because of another patch; or
the patch depended on other patches to be uplifted
first.

Marco Castelluccio

36

Empirical study of the uplift process at Mozilla
Ineffective uplift numbers

Aurora Beta Release Unique count

Reopened 70 49 10 77
Cloned 28 16 3 32
Duplicate created 15 10 2 16
after an uplift

Duplicate resolved 5 3 2 7
after an uplift

Resolved by mul- 50 42 3 78

tiple uplifts

Root causes of ineffective uplifts

other: 3.8%,
_regressions: 20.0%
not fixed: 27.5%-

-need more QA: 1.2%
‘ need more tests: 5.0%
diagnostics: 1.2%
test failure: 3.8% -

‘partially fixed: 37.5%
(a) Reopened

.other: 6.2%

‘not fixed: 12.5%

-regressions: 6.2%

partially fixed: 75.0% -

(c) Duplicate created after an uplift

other: 19.8%
_not fixed: 2.6%

diagnostics: 4.3%
‘ build failures: 6.0%

“test failure: 18.1%

need more tests: 0.9%.
partially fixed: 10.3%.

regressions: 37.9%

(e) Resolved by multiple uplifts

.other: 9.4%
not fixed: 3.1%
Adlagnoshcs: 3.1%

~regressions: 12.5%

partially fixed: 71.9% -

(b) Cloned

‘not fixed: 14.3%

(d) Duplicate resolved after an uplift

partially fixed: 85.7%-

Marco Castelluccio

Empirical study of the uplift process at Mozilla

38

Empirical study of the uplift process at Mozilla
Results

* Code complexity measures were found to be
meaningfully different between fault-inducing
and non-fault-inducing uplifts, in particular
fault-inducing changes were more likely to
have higher complexity (the size of the
changes in terms of changed lines, “code
churn” in the table, was the main factor).

Empirical study of the uplift process at Mozilla

Results

Channel Metric Faulty Clean p-value Effect size
Aurora Code churn 155.0 34.0 5.59e-65 large
Prior changes 362.5 164.0 3.80e-10 small
LOC 903.6 457.4 2.23e-06 small
Cyclomatic 2.5 2.0 1.08e-06 small
of func- 34.3 17.0 2.25e-06 small
tions
Max. nesting 2.7 2.0 5.14e-04 negligible
Comment ra- 0.2 0.1 4.00e-15 small
tio
Module num- 2.0 1.0 2.99e-24 small
ber
Closeness 1.5 1.2 2.78e-13 small
Betweenness 45,221.9 880.7 2.65e-14 small
PageRank 1.7 1.4 1.95e-15 small
of com- 26.0 20.0 1.76e-09 small
ments
Developer 28.5 10.0 1.19e-18 small
exp.
Reviewer exp. 9.0 2.0 6.63e-09 small
Comment 10.0 2.0 9.08e-07 small
words
Developer -3 -3 8.92e-04 negligible
senti.
Owner senti- -2 -1 1.66e-04 negligible

ment

Marco Castelluccio

40

Empirical study of the uplift process at Mozilla
Results

Channel Metric Faulty Clean p-value Effect size
Beta Code churn 141.0 32.0 6.44e-33 large
Prior changes 268.0 156.5 1.02e-03 small
LOC 895.5 476.3 1.66e-03 small
Cyclomatic 2.5 2.0 3.69e-03 small
of funec- 37.0 18.0 3.13e-03 small
tions
Max. nesting 2.7 2.2 0.01 negligible
Comment ra- 0.2 0.1 4.61e-05 small
tio
Module num- 2.0 1.0 7.45e-12 small
ber
Closeness 1.6 1.2 2.87e-07 small
Betweenness 35,661.7 1,327.8 6.00e-08 small
PageRank 1.7 1.4 1.08e-06 small
of com- 28.0 22.0 1.18e-04 small
ments
Comment 8.0 3.0 0.04 negligible
words
Developer 29.0 10.0 1.33e-08 small
exp.
Reviewer exp. 10.0 2.0 3.35e-05 small
Owner -2 -1 4.14e-03 small

ment

Marco Castelluccio

41

Empirical study of the uplift process at Mozilla
Results

Channel Metric Faulty Clean p-value Effect size

Release Code churn 108.0 27.0 2.07e-03 large

Reasons for uplift

Reason Description

Security Security vulnerability.

Crash Program unexpectedly stops running.

Hang Program keeps running but without response.
Performance Functionalities are correct but response is slow or
degradation delayed.

(perf)

Incorrect ren-
dering (render-
ing)

Components or video cannot be correctly ren-

dered.

Wrong func-
tionality (func)

Incorrect functionalities besides rendering issues.

Web incom-
patibility (web
comp)

Program does not work correctly for a major web-
site or many websites due to incompatible APIs
or libraries, or a functionality, which was removed
on purpose, but is still used in the wild.

Add-on or plug-
in incompati-
bility (addon
comp)

Program does not work correctly for a major add-
on/plug-in or many add-ons/plug-ins due to in-
compatible APIs or libraries, or a functionality,
which was removed on purpose, but is still used
in the wild.

Compile

Compiling errors.

Feature

Introduce or remove features.

Improvement
(improve)

Minor functional or aesthetical improvement.

Test-only prob-
lem (test)

Errors that only break tests.

Other

Other uplift reasons, e.g., data corruption and
license incompatibility.

Marco Castelluccio

Empirical study of the uplift process at Mozilla

43

Empirical study of the uplift process at Mozilla
Reasons for uplift in Beta

I Clean [Faulty
S S e O &
N 0 o> & &° \(\ o
¢ Go € & Q 0 ¢
> »7 S & d 7
R ¢ oS

Marco Castelluccio 44

Empirical study of the uplift process at Mozilla
Reasons for uplift in Release

I Clean [Faulty

60 -
40-

20-

Marco Castelluccio 45

Empirical study of the uplift process at Mozilla
Reasons for uplifts

* Performance uplifts are quite risky and so they
should be considered more carefully for uplift.

* Uplifts to fix incorrect functionality or web
compatibility problems are more likely non-
fault-inducing in release than in beta. A
possible explanation is that release uplifts are
tested more thoroughly.

Empirical study of the uplift process at Mozilla

Classification of faults introduced by uplifts

Reason Description

Memory Memory errors, including memory leak, overflow,
null pointer dereference, dangling pointer, dou-
ble free, uninitialized memory read, and incorrect
memory allocation.

Semantic Semantic errors, including incorrect control flow,

missing functionality, missing cases of a function-
ality, missing feature, incorrect exception han-
dling, and incorrect processing of equations and
expressions.

Third-party

Errors due to incompatibility of drivers, plug-ins
or add-ons.

Concurrency Synchronization problems between multiple
threads or processes, e.g., incorrect mutex usage.

Compile Compile-time errors.

Other Other errors.

Marco Castelluccio

47

Empirical study of the uplift process at Mozilla
Faults introduced by uplifts

I Beta [Release

100-
75-
50-

25-

-

semantic men'mry third—'party concu'rrency com'pile other

Marco Castelluccio 48

Empirical study of the uplift process at Mozilla
Classification of faults introduced by uplifts

* The results show that a sizeable number of
faults introduced by uplifts could potentially
be prevented by static analysis / safer
languages.

* Semantic and third-party faults can only be
prevented by more thorough testing.

Empirical study of the uplift process at Mozilla
Number of uplifts per component (Beta)

Uplifts are more common in specific components.

s w oz u 5 O s 2 = % s = M v p & g
< g g £ g 5 R g . 5 5
a 2 z Z 2 H 2 2 z 5 2 2 5 2 B E

Marco Castelluccio 50

Empirical study of the uplift process at Mozilla
Faults-proneness per component (Beta)

Uplifts in some components are more likely to cause regressions.

Marco Castelluccio 51

Empirical study of the uplift process at Mozilla
Faults-proneness per developer (Beta)

Uplifts requested by different developers have different probabilities of causing
regressions.

20%

H B & ") B) & o b3 ° = 1 a @ N B] 2 8 2 a =

Marco Castelluccio 52

Empirical study of the uplift process at Mozilla
Results

* Are regressions caused by uplift more severe than the
bugs that were fixed with the uplift?

 Through a manual analysis, we observed that 37.5% of
the Beta fault-inducing uplifts caused a “more severe
regression”, i.e., regression that is more severe than
the problems they aimed to address.

* No “more severe regression” was found from the
examined Release uplifts, perhaps due to a more strict
uplift policy and code review process on this channel.

Empirical study of the uplift process at Mozilla

Whether the regression an uplift caused is more severe than the problem the uplift
aims to address.

more: 37.5%
same: 33.3%

same: 17.0% -

less: 45.5% less: 66.7%’
(a) Beta channel (b) Release channel

Marco Castelluccio 54

Empirical study of the uplift process at Mozilla
Uplift -> Regression transitions (Beta)

Uplift Regression Frequency Probability
compile crash 2 0.67
compile compile 1 0.33
crash crash 24 0.50
crash func 13 0.27
crash compile 5 0.10
crash perf 3 0.06
crash other 2 0.04
crash security 1 0.02
func func 35 0.57
func crash 14 0.23
func perf 7 0.11
func compile 4 0.07
func other 1 0.02
IMprove crash 7 0.37
improve func 7 0.37
improve compile 2 0.11
1mprove perf 2 0.11
1mprove security 1 0.05
perf func 5 0.50
perf crash 4 0.40
perf perf 1 0.10
security func 8 0.33
security crash 7 0.29
security security 5 0.21
security compile 2 0.08
security other 1 0.04
security perf 1 0.04

Empirical study of the uplift process at Mozilla
Uplift -> Regression transitions (Release)

Uplift Regression Frequency Probability
crash func 6 0.55
crash crash 5 0.45
func func 1 0.50
func perf 1 0.50
security func 2 0.50
security security 2 0.50

Empirical study of the uplift process at Mozilla
Results

Could some of the regressions have been prevented
through more extensive testing on the channels?

We considered regressions to be possibly preventable if
they were reproducible not only by the issue reporter and
were found either on a widely used
feature/website/configuration or via Mozilla’s telemetry

We manually examined a sample of regressions due to Beta
and Release uplifts

25% of the regressions due to Beta uplifts and 30% of the

regressions due to Release uplifts could have been possibly
prevented.

Empirical study of the uplift process at Mozilla
By whom a regression was reproducible

Reproducible Description
By all Everybody was able to reproduce.
By some Somebody was able to reproduce (depending for ex-

ample on the version of a driver, or a specific version
of an operating system, and so on).

By the reporter
only

Nobody else except the reporter was able to repro-
duce.

By no one

Nobody was able to reproduce (and the issue was
found, for example, by analyzing crash reports).

Marco Castelluccio

58

Empirical study of the uplift process at Mozilla
How regressions were found

Found

Description

By tooling

The issue was found by fuzzing or static analysis.

By developers

The issue was found by Mozilla developers (by code
inspection, by running tests that were not included in
Firefox’ test suites, or by running special tools such as
Valgrind or ASan) or by an external developer (e.g.,
a security researcher).

On a widely used
feature /website/-
config

The issue was found by a user (an end-user, a volun-
teer, or a website developer) on a widely used feature,
on a widely used website, or in a widespread configu-
ration.

On a rarely used
feature/website/-
config

The issue was found by a user on a rarely used feature
or rarely used website or on an uncommon configura-
tion.

Via telemetry

The issue was found by analyzing crash reports or
performance measurements from the field.

Marco Castelluccio

59

Empirical study of the uplift process at Mozilla

Whether the regressions caused by an uplift were reproducible

reproducible: 74.0% -

reproducible: 75.0% -

not reproducible (except by reporter): 4.1%
8 not reproducible: 8.2%

-unknown: 8.2%
“reproducible (but not by everyone): 5.5%

(a) Beta channel

_not reproducible (except by reporter): 8.3%

‘not reproducible: 8.3%

-reproducible (but not by everyone): 8.3%

(b) Release channel

Marco Castelluccio

60

Empirical study of the uplift process at Mozilla
How the regressions caused by uplifts were found

developers: 33.3%
telemetry: 17.8‘vel0pers: 27.4% telemetry: 16_7%.

rarely used feature/ |

WebSite/COI'lfig 12.3% rarely used feature/}
_widely used feature/ website/config: 16.7% .widely used feature/
tooling: 19.2%’ website/config: 23.3% tooling: 8.3%' website/config: 25.0%
(a) Beta channel (b) Release channel

Marco Castelluccio 61

Understanding Flaky Tests:
Relevance, Nature, and Challenges

Understanding Flaky Tests:
Relevance, Nature, and Challenges

Around 7°000 tests per week fail
intermittently

They sneakily decrease the value of the test
suites

They decrease developers’ trust in test suites

They make it more difficult to notice real
regressions

Understanding Flaky Tests:
Relevance, Nature, and Challenges

Overview
* Empirical investigation on software repository
data (pertaining to 391 software systems)

* A novel dataset of 200 flaky tests classified by
practitioners who fixed those tests

* The opinions of 120 developers collected in an
online questionnaire

Understanding Flaky Tests:
Relevance, Nature, and Challenges

First research question

* How prominent is test flakiness and how
problematic is it as perceived by developers?

* The mining study and the collected developers’
opinions indicate that flaky tests are rather
frequent and a non-negligible problem, with
possibly important consequences on resource
allocation and scheduling, as well as on the
reliability of the test suite.

Understanding Flaky Tests:
Relevance, Nature, and Challenges

Second research question

 How can the causes of flaky tests be categorized?

* We confirm the existence of seven flakiness types
revealed by Luo et al.. We discover four
additional categories, three of which developers
consider as the most effort-prone types of
flakiness to deal with. Finally, we provide
evidence that flaky tests can be also due to
problems in production code.

Understanding Flaky Tests:
Relevance, Nature, and Challenges

Second research question

Effort Origin
Concurrency 61 } 4.0 .66 T
Async Wait 40 | 3.0 |[1.00T
Asser.tuon 21 1.0 |1.00 T
Failure
Test Order | 21 2.0 |1.00 T
Test Case |
4.0 1.00 T
Timeoy: TS
Resource |
14 3.0 | .85 T
Loak —14]
Platform |
4.0 90 T
Dependency [_10]
Float |
4.0 1.00 T
Precision E
Test Suite
3.5 1.00 T
Timeout E
Time |4 1.0 |1.00 T
Randomness |3| 1.0 |1.00 T

Marco Castelluccio

67

Understanding Flaky Tests:
Relevance, Nature, and Challenges

Third research question

 What are the challenges that developers face
when dealing with flaky tests?

* Reproducing the failing context, understanding
nature and elements involved in the flakiness,
and knowing whether the flakiness is originated
by test or production code are the most serious
challenges for developers. Moreover, designing
test code in a proper manner is an additional
major challenge not mentioned in the reviewed
academic and gray literature.

An Empirical Study of DLL Injection
Bugs in the
Firefox Ecosystem

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem

e Between 2015-07-02 and 2017-08-25, out of
15 Firefox releases, 8 (46, 48, 49, 50, 52, 53,
55, 56) have been «blocked» because of a bug

caused by a third-party software.

An Empirical Study of DLL Injection Bugs in the

Firefox Ecosystem
Current process

* Contact the third-party software developers to
notify them of the problem
* Try to reproduce the problem

* Try to block the software with a blocklist
addition (which requires a new Firefox build
and shipping an update to users)

An Empirical Study of DLL Injection Bugs in the

Firefox Ecosystem
Type of bug

startup crash

Q

=
crash {uiiknown)
I

] plugin crash
=
=

hang

broken functionality

aash

Marco Castelluccio

72

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem
How the bug was resolved

worksforme

fixed by the vendor

not yet resolved

=
@
=
A
a ? .
gl fixed by retiring legacy addons
invalid
=
fixed bug in firefox
blocklisted

addon blocked

workaround

fixed by switching to webextension
duplicate

wionifix

Marco Castelluccio

73

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem
Name of the third-party software

Trend Micro Trustees Avast

Kaspersky

Nahimic
ESET

Norton Websense Endpoint

Comodo

Webroot

T
BitDefender ghtivirus
McAfee
g TR e
: 2 v
Toshiba A\ELibrary McAfee Webadvisor
Premier%)pinion grrg&bDownloader
AnhLab SafeTransaction Lusnée?.l';ﬂ,n En%;%rytAeecunty
Hitman Pro Alert ?I;i' Proaeécrtelgn orkSpace
Jaws GPD taé.e Software :
Sonic Studio ,{ "fmtc /}_,dggtg Load Library
Internet Download Manager é |rewall
K7TotalSecurity ar
Avecto
BaiduPinyin IME
aﬁg.ln rmetaRipt et
edia Fo,

Marco Castelluccio 74

An Empirical Study of DLL Injection Bugs in the

Firefox Ecosystem
Type of the third-party software

antivirus

W
o

=
=

g ks#11

pcks

g accessibility
= IME

g

sCreen rea der
malware

hardware vendor driver

Marco Castelluccio

75

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem
Survey with third-party software developers

 The majority of them don’t perform any kind
of QA

* They use «hacky» techniques, instead of
public and vetted APIs, to inject their code in
other processes

An Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem
Possible solution: blacklist and whitelist

Force developers to perform QA in order to be
allowed in the whitelist

Remove software from the whitelist when it
causes problems

Offer preferential access to the whitelist for
software which uses public and vetted APIs

Improve the APIs to allow additional use cases

Detecting web compatibility issues
using CNNs

Detecting web compatibility issues using CNNs

Objectives

e Automatically detect web compatibility issues

* Automatically detect regressions after large
refactorings (e.g. recently, after the
introduction of a new style engine)

* Offer a tool for web developers to
automatically test their websites for
compatibility

Detecting web compatibility issues using CNNs

Web Compatibility

* |ssues that present themselves only in a
certain class of browser/systems (usually due
to usage of unstable or non-standard APIs,
implemented by a single browser, or corner
cases in the specifications, or limited testing,
or marketing)

Detecting web compatibility issues using CNNs

Web Compatibility

Go gle hacker news n = Go gle
Tutti Immagini Altro hacker news X

Hacker News TUTTI NOTIZIE IMMAGINI VIDEO MAPS
https://news.ycombinator.com/

Show HN: Haskell Ilbrary for pricing and information on Suggerimento: Cerca risultati solo in italiano. Puoi specificare la

crypto-currencies (github. com). 58 points by aviaviavi 5 lingua di ricerca in Preferenze.

hours ...

News Ycombinator - New - FAQ - Jobs Italian Hacker Embassy SHA2017 - Partecipa in
Olanda 4-8 Agosto

The Hacker News — Cyber Security, tickets.italiangrappa. it/

Hacking News
thehackernews.com/?m=1

La comunita degli hacker italiani nel piu grande hacker camp

) . europeo

The Hacker News — leading source of Information

Security, latest Hacking News, Cyber Security, Network L
. . Promozioni

Security with ...

(New) Become A Professional ... - Tech - Learn Ethical Location

Hacking Online - Data Breach
Safe Harbour Authority

Hacker News - Reddit

https://www.reddit.com/r/hackernews/ Good News Agency - goodnewsagency.org
hackernews. subscribeunsubscribe16,196 readers. 87 www.goodnewsagency.org/

users here now. A mirror of Hacker News. a community

for 9 . IlMmaam—=ia Aalla hitarma matiaia | amcl o ava 1o hiianma ;mati=ial

Marco Castelluccio

Detecting web compatibility issues using CNNs

Web Compatibility

 The compatibility problem is often in the
structure of the page, while the content can
change (e.g. a news site, ads, a carousel, etc.)

Detecting web compatibility issues using CNNs

Overview

* Collection of a dataset of screenshots using
Selenium

* Training of a Convolutional Neural Network on
couples of images (one from Firefox, one from
Chrome) to detect images which are not
compatible

* Use of a Siamese architecture, particularly
suitable to this kind of problems

Detecting web compatibility issues using CNNs

Overview

* Loading of pages from webcompat.com (a
tracker of web compatibility issues)

 Random selection of elements of the page to
interact with (depth first search), in an
attempt to reproduce problems

* Repetition of » multiple times per day, on
different days (to «teach the network» that
some web sites are compatible even if their
content changes)

What Makes a Code Change Easier to
Review

ESEC/FSE 2018

What Makes a Code Change Easier to Review

* Interested in finding what makes code
easy/difficult to review

* Developed and deployed an addon on Mozilla
review tools (at the moment, four different
systems...) to collect feedback about patches
from reviewers

What Makes a Code Change Easier to Review

m Bugzilla <

js/src/jit-test/tests/coverage/simple.js Reviewed
Lines 101-121 checkLcov(runction () { //FN:$,top-level

//LH:2

2});

checkLcov(function () { //FN:$,top-level //FNDA:1,%
var 1 = ", ".split(','); //DA:$,
if (l.length == 3) //DA:$,1 //BRDA:$,0,0,1 //BRDA:$,0,1,0

How long did you take to review this patch?

What aspects of this patch, if any, contribute to its reviewability?

What aspects of this patch, if any, should be improved to enhance its reviewability?

i= Browse [E§ Advanced Search " New Bug

//LH:2
b

checkLcov(function () {
//FNF:1
//FNH:1
//LF:1
//LH:1
i

checkLcov(function () { function f() {

f(); //DA:$,1
//FNF:2
//FNH:2
//LF:2
//LH:2

H;

My Dashboard 3 () "%

‘,'.split(','); //FN:$,top-level //FNDA:1,% //DA:$,1

checkLcov(function () { //FN:$,top-level //FNDA:1,%

split(',
ngth == 3)

var 1 =
if (1.1

How would you rate the reviewability of this patch?

Marco Castelluccio

)i

//DA:$,1
//DA:$,1 //BRDA:$,0,0,1 //BRDA:$,0,1,0

','.split(','); } //FN:$,top-level //FNDA:1,% //FN:$,f //FNDA:1,f //DA:$,1

87

What Makes a Code Change Easier to Review
Findings

* Interviewed developers primarily focus on
three aspects for reviewability:

— code churn;
— change description;
— commit history

e Surprisingly, test inclusion does not play a
significant role in reviewability

* The connection between reviewability and
acceptance is weak

What Makes a Code Change Easier to Review
Findings

* Interviewed developers primarily focus on
three aspects for reviewability:

— code churn;
— change description;
— commit history

e Surprisingly, test inclusion does not play a
significant role in reviewability

* The connection between reviewability and
acceptance is weak

Publications

* M. Castelluccio, G. Poggi, C. Sansone, L. Verdoliva —
Land Use Classification in Remote Sensing Images by

Convolutional Neural Networks —
https://arxiv.org/abs/1508.00092

* M. Castelluccio, G. Poggi, C. Sansone, L. Verdoliva —
Training Convolutional Neural Networks for Semantic
Classification of Remote Sensing Imagery —
JURSE2017 (submitted)

LECTRIC AL eNGINEERING

https://arxiv.org/abs/1508.00092

Publications

* M. Castelluccio, C. Sansone, L. Verdoliva, and G. Poggi —
Automatically analyzing groups of crashes for finding
correlations — Proceedings of the 2017 11th Joint
Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2017)

M. Castelluccio, L. An, and F. Khomh —Is It Safe to
Uplift This Patch? An Empirical Study on Mozilla Firefox
— In proceedings of the 33rd International Conference
on Software Maintenance and Evolution (ICSME 2017).
Received IEEE TCSE Distinguished Paper Award. Invited
for publication on “Empirical Software Engineering”
journal.

Publications

 A.Ram, A.A. Sawant, M. Castelluccio, and A. Bacchelli —
What Makes A Code Change Easier to Review? An
Empirical Investigation On Code Change Reviewability —
Proceedings of the 2018 26th ACM Joint European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE
2018)

L. An, F. Khomh, S. McIntosh, and M. Castelluccio —
Why Did This Reviewed Code Crash? An Empirical
Study of Mozilla Firefox — The 25th Asia-Pacific
Software Engineering Conference (APSEC 2018)

Publications

M. Castelluccio, L. An, and F. Khomh — An
Empirical Study of Patch Uplift in Rapid
Release Development Pipelines — Empirical
Software Engineering journal (EMSE)

M. Eck, F. Palomba, M. Castelluccio, and A.
Bacchelli — Understanding Flaky Tests:
Relevance, Nature, and Challenges — ICSE2019
(submitted)

Publications

* L. An, M. Castelluccio, and F. Khomh — An

Empirical Study of DLL Injection Bugs in the
Firefox Ecosystem — EMSE (submitted)

Questions

Marco Castelluccio

95

Previous Studies on Urgent Patches

« S. Hassan, W. Shang, and A. E. Hassan, “An
empirical study of emergency updates for top
android mobile apps”, Empirical Software
Englneermg

the urgent upo “econ the
3 None of these studies has
steam platform™ empirically investigated how
: urgent patches affect software
E n gl nee rl n g " quality in terms of fault-
. M. T Rahman and |, proneness

Software

Case Study Designh - Subject System

Mozilla Firefox because:

e Mozilla is the most studied system for the rapid release problem

e Mozilla’s uplift data is publicly available

® One of our authors works at Mozilla and can easily interview Mozilla
release managers

Case Study Design - Research
Questions

RQ1: What are the characteristics of patches that are uplifted?

RQ2: What are the characteristics of uplifted patches that
introduced faults in Mozilla Firefox?

We will quantitatively and
. qualitatively answer both
. questions

Case Study Design - Analysis Overview

Bug Repository
(Bugzilla)

Version Control
System
(Mercurial)

Keyword: “approval-

mozill al'dsee;;tify uplifted Devel9per &
Bug reports g reports - sz\;::ri\::t
N
Identify fault- | S77
—®| related issues aTGOTTTh nentify fault

\ 4

Commit logs

/

Extract patches

_»| inducing patches

Quantitative &
qualitative
analyses

Source code metrics

\ 4

RQ1

\ 4

RQ2

Case Study Design
(Quantitative Analysis - Metrics)

/“Experience &

participation
developer experience, .
reviewer experience, U plift process
comment number, " landing delta, response
. comment words, review _delta, release delta ’
“duration '
- Sentiment
. developer sentiment,
. module owner
sentiment R .
""""""""""""""""" " Code complexity ‘
“Social network . patch size, test patch size,
" analysis . prior changed times, LOC,
. PageRank, . McCabe, function number,
. betweenness, ' max. Nesting, comment

_closeness y _ratio, module number

Case Study Design
(Quantitative Analysis - Statistical Tests)

We use the Mann-Whitney U test (a = 0.05) to
investigate whether there is a statistically
significant difference between a patch that was
uplifted and a patch that was not uplifted (RQ1),
and whether there is a statistically significant
difference between a faulty uplifted patch and a
clean uplifted patch (RQ2).

For the results with statistically significant
difference, we will use cliff’s delta to measure the
magnitude of the difference (i.e., effect size).

Case Study Design
(Qualitative Analysis - RQ1)

Based on a random sampling, we manually examine and
classify the reasons why developers uplift patches in the
Beta and Release channels.

We interview Mozilla release managers on the following
guestions:

1) “Which factors do you take into account when
deciding about an uplift?”

2) “Are there differences in how you handle uplifts in
different channels, and what are the differences?”

3) “How do you decide which developers you can trust?”

Case Study Design
(Qualitative Analysis - RQ2)

Based on a random sampling, we manually examine
and classify the root causes of uplifted patches that
lead to faults in the Beta and Release channels.

We interview Mozilla release managers on the
following question:

“What are the characteristics of the fault-
introducing patches that you are not currently
taking enough into account but could be
considered in the future?”

Results - RQ1 (statistical tests)

For all of the Aurora, Beta, and Release channels,
uplifted patches have significant shorter response
delta (with small effect size) than other patches.

Release managers’ feedback: “when I reject
something, | won’t make the call immediately. |

will think about it before doing it, in case |
change my mind or new facts are coming in the

equation”.

Other results are channel dependent.

Results - RQ1 (uplift reason, Beta
channel)

" Clean [l Faulty

100-

50-

Results - RQ1 (uplift reason, Release

60-

40-

Faulty uplifts are often
used to address wrong
functionality, crashes,
vulnerabilities, and
incompatibilities

—————

channel)

Clean | Faulty

In both channels, developers uplifi“*\
patches due to wrong functionality,
crash, vulnerability, web

. incompatibility, and introducing new

@ o features.

/! N
4 O

@

Results - RQ1 (release manager
interview)

“Which factors do you take into account when
deciding about an uplift?”

Release managers said that they will consider the
importance of the issue, risk associated with the
patch, timing of the uplift in stabilization cycles,
and verification of the path.

Results - RQ1 (release manager
interview)

“Are there differences in how you handle uplifts in
different channels, and what are the differences?”

After the middle point of the Beta cycle, release
managers only accept patches fixing high security
issues, high volume crashes, severe recent
regressions, severe performance issues or
memory leaks.

Results - RQ1 (release manager

interview)

“How do you decide which developers you can
trust?”

Release managers mentioned:

« When they seem really overconfident or aren’t
telling me the whole story | lose some trust

« Some developers are taking a lot of risks, some
other less and are super reactive to fix potential
fallout

Results - RQ2 (statistical tests)

For all of the Aurora, Beta, and Release channels,
fault-introducing uplifts have significantly larger
patch size (with a small effect size) than clean
uplifts.

Other results are channel dependent.

Results - RQ2 (root causes of faulty
uplifts)

| |Beta|l Release

100-

Semantic and memory

75" errors are major causes of
fault-introducing uplifts

50-

25-

semantic merhory third—'party concu'rrency corﬁpile other

Results - RQ2 (release manager
interview)

“What are the characteristics of the fault-introducing
patches that you are not currently taking enough into
account but could be considered in the future?”

All the release managers agreed that it would be
beneficial for them to have more detailed information
about the complexity of the targeted patches and
more information about the history of the
components involved in these patches.

Conclusion

Patch uplift allows to promote features or bug fixes
directly from development channel to a stabilization
channel.

Patch uplift sometimes lead to faults.

Software organizations can apply (or enhance their effort
of using) static analysis tools to prevent memory-related
faults.

Reviewers and release managers should more carefully
inspect uplifts that address: wrong functionality, crashes,
vulnerabilities, and incompatibilities.

Reviewers should make more effort on inspecting
potential semantic faults.

