

Ricardo Cardona Rivera Tutor: Mario di Bernardo XXXIV Cycle - Ist year presentation

Analysis and Control of Electrical Power Networks

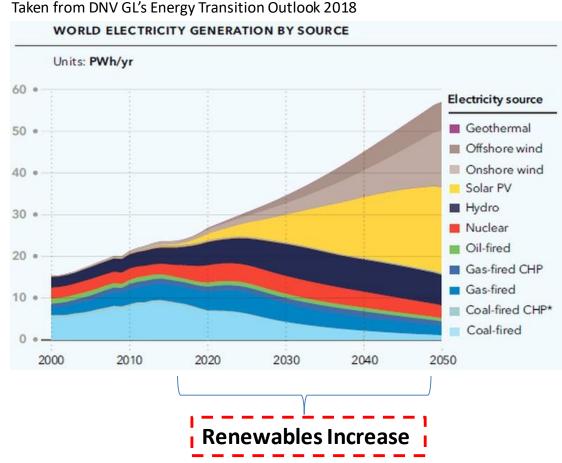
Background

<u>Undergraduate Degree:</u> 5-year Electronic Engineering degree

<u>M. Sc. Degree:</u> Automation Engineering (September 2017) at Universidad Nacional de Colombia, Manizales

Research Group: Sincronizzazione Controllo di Reti, Processi e Sistemi nonlineari (SINCRO)

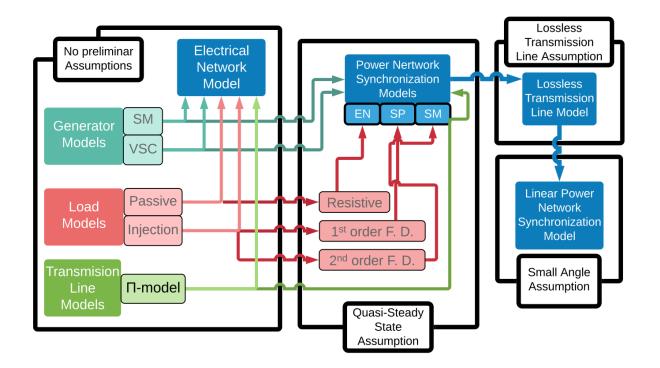
Scholarship: Borsa di Ateneo riservata a studenti stranieri



Ricardo Cardona Rivera

Motivation and Aims

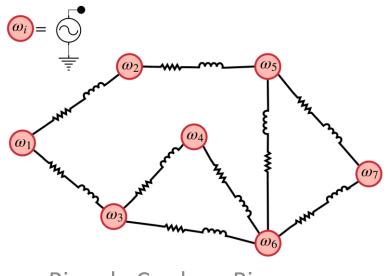
- Why the power network:
 - Key components of critical infrastructures.
 - New control challenges due to the introduction of renewables.
 - Distributed generation requires new control strategies. Transition from centralized to the decentralized and distributed paradigm.


Motivation and Aims

- Limitations of current control and management strategies:
 - Robustness decreases because of renewable energy sources (Low inertia phenomenon)
 - Frequency restoration controllers are designed under strong transmission line assumptions.
 - Network topology is not used for control purposes.
- Key Research Questions:
 - How to design decentralized control strategies for power networks, that overcome previous limitations?
 - Which power network models can be used for decentralized control strategies design?

Research activity so far

• I carried out an extensive literature review on modelling and control of power networks


• Power network models can be classified depending on the use of three main assumptions

Power Network Models

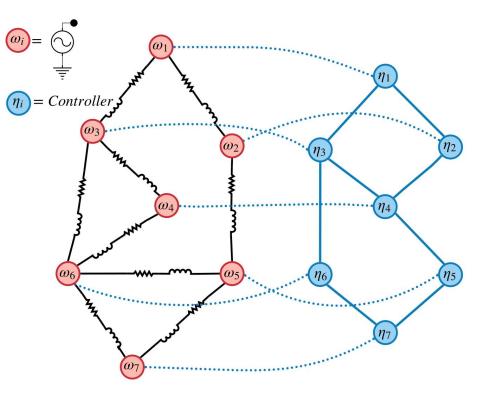
• The Power Network model synchronization model is then defined as:

$$\frac{2H_i}{\omega_{ref}}\ddot{\delta}_i + \frac{D_i}{\omega_{ref}}\dot{\delta}_i = P_i^* - \sum_{j=1}^n \left|\hat{V}_i\hat{V}_jY_{0ij}\right|\sin\left(\delta_i - \delta_j - \gamma_{0ij}\right) + u_i$$

• Where $\dot{\delta}_i = \omega_i - \omega_{ref}$ is the frequency deviation from the nominal value

Products

Publications (in preparation):


• We are currently writing a review paper on modelling and control of the power grid.

Next research steps

Possible Solutions:

- Design and validate Multiplex network control methods (PI Multiplex control) for power grids.
- Exploit Network topology for optimal power dispatch.
- Validate numerically and experimentally (in collaboration with Pisa University) the control strategies and design

Next years

Student: Name Surname ricardo.cardonarivera@unina.it							Tutor: Name Surname mario.dibernardo@unina.it								
	Credits year								Credits year 2						
		1	2	3	4	5	6			1	2	3	4		
	Estin	bimo	bimo	bimo	bimo	bimo	bimo	Sum	Estir	bimo	bimo	bimo	bimo	bi	
Modules	0			6			6	12	12						
Seminars	0			1	1,8	2		4,8	8	0	0		0	Γ	
Research	0	10	10	3	8,2	8	4	43	40	0	0	0	0		
	•	10	10	10	10	10	10	60	60	0	0	0	0		

Ricardo Cardona Rivera

Thank you for your attention.