Carmela Calabrese

Tutor: Mario di Bernardo – co-Tutor: Benoit Bardy XXXIII Cycle - Il year presentation

Analysis and control of leadership emergence and human group coordination

Key research questions


- Many day-to-day activities rely on human group coordination.
- Which factors affect the synchronization?
- How do individual dynamics or the specific interaction pattern affect leadership emergence?
- Which movement strategies are employed by the leaders to steer the dynamics of the rest of the group?

Applications

- Rehabilitation via exergames in small groups.
- Effective leadership in working and educational groups.

Methods

To analyse social dynamics, we considered a group version of an experimental paradigm called *mirror game*.

Experiment 2: Chronos

Experiment 1: Pendula

Spatial configurations of the players

Metrics used to quantify leadership:

- a-mean ranking position in phase,
- b-Net Causation Entropy among the agents,
- c- Gini index.

Polynomial linear regression analysis was run to extract leadership patterns between the metrics a,b.

Influence chart Phase leading chart Geometric pattern Page 1.0.33 Proc 4.0.001 Page 1.0.35 Proc 5.0.001 Page 1.0.35 P

Results

- 1. Three leadership scenarios emerge towards group motor synchronization, characterized in terms of geometric patterns (see Figure).
- 2. Spatial configuration influence the emergence of leadership scenarios.
- 3. Leader role is distributed across group agents (*shared leadership*).
- 4. Social dimension does not affect leadership patterns occurrence.

Contacts and Acknowledgements

carmela.calabrese@unina.it, +39 081 76 83607

In collaboration with Mario di Bernardo, Benoit Bardy and Pietro De Lellis

Scholarship Vinci programme 2017, promoted by UFI/UIF

FRANCO 1TALIENNE FRANCES

Future developments

$$\dot{\theta}_i(t) = \omega_i + c \sum_{j=1}^{N_{players}} a_{ij} \sin(\theta_j(t) - \theta_i(t))$$

- Experimental work: human behavioural rules behind collective decision making are still unknown but the assumption of unweighted interactions is unrealistic. How could we infer them?
- Theoretical work: exploring synchronization in a network of stochastic Kuramoto oscillators.