

Riccardo Caccavale Tutor: Alberto Finzi XXIX Cycle - III year presentation

Flexible Task Execution and Cognitive Control in Human-Robot Interaction

Background

Graduation MS: Computer Science (Computational Models) Federico II.

DIETI groups: PRISCA laboratory of advanced cognitive science, PRISMA laboratory of industrial robotics.

Collaborations: LAAS-CNRS (Toulouse), TUM (Munich)

Credit Summary

	Credits year 1				Credits year 2					Credits year 3																
		-	2	3	4	5	6			٦	2	3	4	5	6			1	2	3	4	5	6			
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Total	Check
Modules	18					3	14	17	15		3				3	6	7						6	6	29	30-70
Seminars	13				2,8	2,2		5	4	1				5,8		6,8	0							0	12	10-30
Research	34	10	10	8	8	7	5	48	45	9	7	10	10	5	7	48	40	8	8	8	8	8	3	43	139	80-140
	65	10	10	8	11	12	19	70	64	10	10	10	10	11	10	61	47	8	8	8	8	8	9	49	180	180

Period Abroad:

3/05 – 31/05 and 21/06 – 28/07 at TUM university of Munich.

Flexible Human-Robot Interaction

In social and industrial robotics **flexible** and **natural** interaction with humans is **needed** to perform structured collaborative tasks.

Robots should be able to **flexibly adapt** action execution to the human behaviors and the environmental changes.

Plan-based: relevant works in rely on the *three layer architectures* [Gat et al.] exploiting planning, re-planning [Ayan et al] and plan-adjustment [Estlin et al].

> Sometimes slow to react to unexpected events or human interventions.

Behavior-based: some approaches involve *reactive* and *behavior-based* systems [Arkin] to on-line adapt task/plan execution [Nicolescu et al, Proetzsch et al].

> Need to be orchestrated.

Cognitive Control and Attention

Cognitive control: ability to configure itself for the performance of specific tasks through appropriate adjustements in perceptual selection, response biasing, and on-line maintenance of contextual information. [Botvinick et al. 2001]

- **Contention Scheduling:** conflicting actions have to compete each other: only the most active actions are executed.
- **Supervisory Attentional System:** is employed to oversee the contention and regulate actions according to the context [Norman and Shallice 80].

Attentional Executive System

$$e_b = \mu_b \lambda_b$$

Working Memory: maintains the executive state and the structure of the tasks in the attentional focus of the system, including all the task the system is executing or willing to execute.

Long Term Memory: is a repository which contains the definition of all the **tasks available** to the system.

Attentional Behaviors: elaborates sensor data (behavior-specific stimuli) producing a pattern of motor actions.

Emphasis: **integrates** top-down (μ_b) and bottom-up (λ_b) stimulation to manage the **contention** between behaviors and **clocks**.

Contention and Regulations

Summary

- In many robotic contexts a robotic systems should be able to dynamically execute activities, react to human behaviors and environmental changes.
- Prominent approaches rely on planning/re-planning processes during the task execution that are time consuming.
- In the proposed approach we exploit contention scheduling and supervisory attention during the task execution.
- The system includes attentional regulations mechanisms for the flexible orchestration of robotic sensorimotor processes.
- During this PhD, the proposed system has been applied in different robotic contexts including HRI, flexible plan execution, and learning...

Attentional Regulations in HRI

- Commands recognized by the HRI module are associated with tasks to be allocated in WM.
- Tasks can be instantiated with contextual subtasks and arguments, while their execution is regulated by topdown/bottom-up attentional mechanisms.

- 1. Recognition layer acquires the input from sensors and provide a classification for each interaction modality.
 - 1. Speech: Julius based recognition.
 - 2. Gestures: Latent Dynamic Conditional Random Fields (LDCRF).
- Fusion Layer acquires the N-best gestures and speech from the classifiers to produce a list of N-best users intention.
- 3. Dialogue Layer integrates information about the dialogue history that is represented as a Partially Observable Markov Decision Process (POMDP) producing a user intention according to his policy.

Interaction Ambiguities: Coffee or Tea?

Interactive Commands: some user's acts are not explicit commands, therefore the system should interpret the human intention supporting the human activity with a proactive behavior.

Test Scenario: we consider the system at work in a kitchen scenario where two ambiguous tasks (make-coffee and make-tea) should be interpreted by the system.

	Success	Correction	Failures
Percent.	56.6%	26.7%	16.7%
Hum. Act.	1.48	2.25	3.6
Std.	0.67	0.42	0.52

Flexible Plan Execution

- The planner suggests to the attentional system actions or subtasks to perform.
- The attentional system integrates the plan with the user commands and the environmental context in order to flexibly react to unexpected events.

Hierarchical Task Network (HTN): Planning problems are specified in a hierarchical network providing a set of *primitive*, *compound* or *goal* tasks.

Human-Aware Task Planner (HATP): is an HTN planner that produces a different sequence of actions for each agent (human or robot).

Attentional Regulations

Attentional Regulation and Action Selection:

- The action selected by the plan and the user are **emphasized** (top-down).
- The bottom-up stimulations emphasizes actions that are **more accessible** to the robot.
- The **most emphasized** actions among all active actions are selected for the execution.

Testing and Results

Simulated Scenario: We consider the system at work in a simulated scenario where a mobile robot can execute pick-carry-and-place tasks in the presence of multiple colored objects.

PE	RFORMANCI	ERRORS				
Accuracy	Precision	Recall	Violation	Worsening		
0.9439	0.9375	0.9868	0.8333	0.3333		

Real Scenario: We studied the system at work in a real-world scenario evaluating how the integrated system can flexibly adapt the execution to unexpected behaviors of the human avoiding replan.

The SHERPA Context

Attentional Cognitive Filtering

We assume the drones communication as a problem of contention for shared resources (communication slots).

The number of available slots reduces with respect to the users cognitive load.

- Top-down and bottom-up attentional regulations used to emphasize relevant information.
- Hierarchical representation of the active tasks (WM).
- Monitoring processes with adaptive activations (frequency).
- Contention scheduling to manage conflicts (Nwinner-take-all).

Attentional Regulations

- The **top-down** regulation is given by the mission state represented in WM by an annotated tree.
- The **bottom-up** regulation is given by the on-board sensors of the drones.

 $e = \mu_{task} (\lambda_{arva} + \lambda_{batterv} + \lambda_{vision})$

Adaptive Interface

Testing and Results

- Interface-monitoring (*primary*): the user has to monitor 8 drones during their search activities.
- Word-counting (*secondary*): the user should count the letters contained in each word of a list.

- Adaptive: the number of communication slots is reduced to one (maximum cognitive load).
- **No-adaptive**: fixed size of infoboxes and multiple parallel communications allowed.

	Events	Occurred	Events	Missed	Victims Missed			
	avg	std	avg	std	avg	std		
No-Adapt	19.22	1.69	3.67	3	0.33	0.25		
Adapt	11.44	2.28	1.22	0.69	0.11	0.11		

no-A	daptive	Adaj	otive	Improvement			
avg	std	avg	std	avg	std		
19.4%	1%	10.6%	0.4%	8.9%	0.4%		

Structured Tasks Learning

- *The Robot Manager*: responsible for robotic motion, it splits the demonstration (teaching mode) in subsegments.
- The Attentional System: contains the definition of all the **tasks available** to the system, updates the task according with the given sub-segments, select the most relevant action for the execution/learning.

Modality switching (teach/execute).

- Kinesthetic Teaching.
- Trajectory Execution.

Online actions segmentation.

- Object Proximity: end effector enters/leaves a near-object area.
- Open/Close Gripper: open/close gripper command is received (speech).

3. Online motion generation.

- Far-Object-Action (FOA): actions far from the object are executed with a point-to-point motion (less accurate).
- Near-Object-Action (NOA): actions near the object are executed with Dynamic Movement Primitives (more accurate).

Segmentation and Task Update

- The attentional system tracks and monitors both the human and the robot task execution:
 - It is responsible for flexible and cooperative task execution;
 - During teaching it associates trained motion primitives to tasks and sub-tasks.

Testing and Results

• Add-water task (*simple*): take and pour the water in the cup.

- **Prepare-coffee task** (*complex*): prepare the instant coffee.
- **Prepare-tea task** (*re-usage*): prepare tea reusing some prepare-coffee subtasks.

	Teaching time (avg ± std)	Execution time (avg ± std)	Success Rate
add-water	50.4 ± 2.0	77.5 ± 2.3	1
prepare-coffee	165.7 ± 12.8	224.5 ± 2.9	0.9

We assess the system performances executing 10 learning sessions and 5 executions for each task (randomly changing objects positions) measuring times and success rate.

	Teaching time (avg ± std)
No Re-usage	84.2 ± 2.9
Re-usage	39.6 ± 2.4

47% faster!

Work in Progress...

Work in Progress...

Conclusions

- We proposed a robotic cognitive control framework for the flexible execution of structured complex tasks in the context of human-robot interaction.
- The framework was applied in different incremental scenarios, facing aspects of human-robot interaction, flexible plan execution, filtering and learning.
- Some of the applicative scenarios was also framed in the context of EU projects (SAPHARI and SHERPA).
- We assessed the framework performance in the different proposed contexts, considering simulations and real robotic scenarios.

Productions

Journal Papers:

- Flexible task execution and attentional regulations in human-robot interaction, IEEE Transactions on Cognitive and Developmental Systems, 2016.
- Kinesthetic teaching and attentional supervision of structured tasks in human-robot interaction, Autonomous Robots Journal, Springer, 2016. [Submitted]

Conference Papers:

- Attentional regulations in a situated human-robot dialogue. *IEEE RO-MAN*, 2014.
- Attentional top-down regulation and dialogue management in human-robot interaction. HRI, ACM, 2014.
- Plan Execution and Attentional Regulations for Flexible Human-Robot iteraction. IEEE SMC, 2015.
- Attentional supervision of human-robot collaborative plans. *IEEE RO-MAN*, 2016.
- Attentional multimodal interface for multidrone search in the Alps. IEEE SMC, 2016.
- Cognitive control and adaptive attentional regulations of robotic task execution. EuCognition meeting, 2016.

Book Chapters:

- Attentional Top-Down Regulations in a Situated Human-Robot Dialogue ICRA 2014 WS Robots in Homes and Industry: Where to Look First?
- Integrating Multimodal Interaction and Kinesthetic Teaching for Flexible Human-Robot Collaboration. HFR-2015.

Workshop Papers:

- Attentional Top-Down Regulations in a Situated Human-Robot Dialogue ICRA 2014 WS Robots in Homes and Industry: Where to Look First?
- Integrating Multimodal Interaction and Kinesthetic Teaching for Flexible Human-Robot Collaboration. HFR-2015.
- Attentional Plan Execution for Human-Robot Cooperation. AI*IA-2015 Italian Workshop on Artificial Intelligence and Robotics (AIRO2015).
- A human-robot interaction framework for search and rescue in the Alps, AI*IA-2016 Italian Workshop on Artificial Intelligence and Robotics (AIRO2016).
- Integrated task learning and kinesthetic teaching for human-robot cooperation, AI*IA-2016 Italian Workshop on Artificial Intelligence and Robotics (AIRO2016).

Thanks for Your attention

