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Background |

m Master Degree in Information Technology at University of Naples —

Federico 1l

m Thesis: Un prototipo di middleware configurabile — nel dominio
ferroviario — per fault detection e comunicazione affidabile

This thesis work is part of a joint project involving the DIETI and
Rete Ferroviaria Italiana — RFI — Gruppo delle ferrovie dello Stato

S.p.a
m I'm currently involved in three research topics:

Approximate computing
Design of signaling systems for the railway domain

Hardware security
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Introduction
@00

Introduction |

m We are rapidly approaching the physical limit of the manufacturing
process for integrated circuits (1Cs).

We cannot rely on die-shrinking to improve performances anymore.
m Shrinking the size also increase manufacturing costs.
m Modern computing systems are experimenting an unprecedented
growth of data to be processed.

m The increasing costs of energy severely impacts operating costs of
computing systems.

It is estimated energy consumption will exceed the amount of
energy produced before 2040 [3]
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What can we do?
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The Approximate-Computing design paradigm (AxC)
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Introduction

m Inherent error-resilience:

the property of an application to produce acceptable outputs despite
some of its underlying computations being incorrect or approximate.

m significant redundancy is present in large, real-world, data sets that
applications process,

B computation patterns (such as statistical aggregation and iterative
refinement) that intrinsically attenuate or correct errors due to
approximations,

B outputs are equivalent (i.e., no unique golden output exists), or

m small deviations in the output cannot be perceived by users.
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Challenges |

m The wide-spread use of AxC is hindered by several challenges:
Identifying approximable data/portion, and suitable approximation
techniques
Error metrics and error-assessment
Savings estimation
Optimization
Lack of general methodology
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Approximable data/portion and techniques |

m Applying AxC requires the designer to have deep knowledge of the
target application.
Which data should | approximate?
Which portion should | approximate?
How should | introduce approximation?

m A naive approach is unlikely to be effective.

m A vast plethora of approximation techniques have been proposed,
either for SW or HW applications
SW: loop-perforation, memoization, load-value approximation,
precision-scaling, etc.
HW: timing: voltage/frequency scaling; functional: Boolean
algebra, AlG-rewriting, precision-scalig, Cartesian Genetic
Programming (CGP), etc.

m How to avoid manually-introducing approximation?
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Approximable data/portion and techniques Il

m Mutators! [2]

They leverage the Abstract Syntax Tree (AST) representation.

{match, mutate}:
B match: identify which part of the algorithm has to be approximate
B mutate: defines how to apply approximation

The definition is application-independent.

Require almost no knowledge on the target application.

Mutators hide the adopted approximation technique.

Applying multiple mutators to the same AST allows simultaneously

applying multiple approximation techniques!
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Approximable data/portion and techniques

m Applying mutators define an approximate variant of the original
algorithm.
m Approximate variants allow configuring the degree of introduced
approximation.
n approximable operations, each allowing k different degrees of
approximation
simultaneously approximating j operations results in (7) different
approximate variants
each variant allows k/ different approximate configurations
the total number of approximate configurations is >_"_, ki x (7)
The design space may be awkwardly large!
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Design-space exploration |

m The goal is to save as much as possible while introducing as little
error as possible.

m Unfortunately, little error and significant savings are conflicting
design objectives!
m AxC requires addressing Multi-objective Optimization Problems
(MOPs)
There is no single solution!
Solving MOPs may be computation-intensive.
A suitable heuristic must be selected, e.g., NSGA-II [4] or
AMOSA [6].
Decision-variables and fitness-functions must be properly identified.
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Error-assessment

m Error-assessment is mandatory to guarantee the output-quality
satisfies application-defined constraints.
A suitable error metric, or a set of metrics, have to be selected.
B Some metrics may be too sensitive, hampering the AxC.
m The PSNR is too sensitive to noise, the error-frequency is not
suitable for arithmetic operators
A suitable error-assessment process have to be selected:
It strictly depends on the application.
m Simulating the whole application may be utterly time-consuming.
m Formal-methods may be inapplicable, due to complexity.
]

The lack of input-output pairs may hamper machine-learning-based
techniques.
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Estimating hardware-requirements

m Assessing requirements of an application may require the
simulation over a significant dataset
The dataset may be not available.
The whole procedure may be too time-consuming.
Concerning hardware, assessing requirements may require the
synthesis and simulation of large, complex designs.

m Model-based estimation

The model is application-dependent
Must consider how the approximation technique impacts on
requirements
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m Case studies:
Generic combinational-logic and building-blocks
Image-processing applications
m The Sobel edge-detector
m The JPEG compression

Artificial intelligence applications

m Decision-tree based multiple classifier systems
m Deep-neural networks
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The Sobel edge-detector |

m Aim: design a hardware accelerator for the Sobel edge-detector

Approximate mathematical operations from the EvoApprox-Lite [9]
library of components
Decision variables allow selecting which component from the library
should be used
Fitness-functions:
m Error: PSNR computed on the SIPI Image -database [1]
m Silicon area: as the sum of the contributions of each single
approximate circuit.
m Power consumption: as the sum of the contributions of each single
approximate circuit.
NSGA-II heuristic.
Design space: ~ 4.9 x 107 configurations.

m This allows comparing the methodology against exhaustive
exploration.
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The Sobel edge-detector Il

800 1
N

. Vjs

£ 700 1 f

2

]

z . .

< 600 Exhaustive evaluation

§ # Pareto-front

= High-effort estimation

N 500 4 : P
A Medium-effort estimation
¢ Low-effort estimation

T T

T T
10.0 125 15.0 17.5 20.0 22.5 25.0 275

PSNR
PSNR v.s. Required silicon area

alvatore




Case-studies
O@0000

The Sobel edge-detector Il
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The Sobel edge-detector IV

Absolute Distance | Normalized Distance

Effort | Pop. Iter. Time | Min. Avg Max | Min Avg Max
Exh. - - ~170h - - - - - -

Low 500 3 ~bmin | 0.013 1.58 76 | 5.9e-6 2.4e-4 1.7e3

Med. 2000 11 ~4h 0.002 1.57 58 | 3.7e-6 6.9e-6 5.6e-4

Hig. | 20000 100 =22h | 0.001 1.5 44 | 36e-6 6.8e6 5.4e4
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The JPEG case study |

m Aim: design a hardware accelerator for the JPEG compression

The Discrete Cosine Transform (DCT) is the most demanding step
of the algorithm
Three levels of approximation:

m At user-level: we adapt the high-frequency filter threshold
B At algorithmic-level: we adopted multiplier-less fast algorithms
(seven different algorithms are taken into consideration)
B At hardware-level: we use approximate circuits to compute the least
significant part of additions
Decision variables allow:

m selecting the high-frequency threshold for the high-frequency filter
® how many bits have to be approximate in each of the sum
B which approximate sum implementation to be adopted
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The JPEG case study Il

Fitness functions:

m Error: MDSSIM [10] computer over the SIPI Image Database [1]
m Silicon area: estimated from the number of transistors required to
implement single adder cells.

Design space: ~ 2.66 x 10%9 ~ 2164 and ~ 1.081 x 108 ~ 2265
configurations
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The JPEG case study Il
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Case-studies
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Generic logic |

m Aim: design generic combinational logic circuits
cut-based AIG rewriting

Decision variables allow selecting which cut to replace
Fitness-functions:

m Error: depends on the domain (error-frequency / AWCE)
m Silicon area: estimated from the number of AlG nodes

AMOSA heuristic.
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Generic logic Il
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Decision-tree based classifiers (DTMCS) |

m Aim: design a hardware accelerator for DTMCSs

Approximation: introduced through the use of approximate
comparators, designed using the precision scaling technique
Decision variables: allow selecting the amount on neglected bits for
each of the features
Fitness functions:
m Error: classification-accuracy loss (to be minimized), measured
through simulations on the SPAM-base data set [5]
m Hardware requirements: silicon area (to be minimized), estimated
from the number of neglected bits
Design space: 52!F1 different configurations, F is the size of the
feature set.

Number of trees ranging from 1 to 40
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Decision-tree based classifiers (DTMCS) Il
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Decision-tree based classifiers (DTMCS) Il
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Neural Networks |

m Aim: design a hardware accelerator for NNs

Approximation: introduced through the use of approximate
multipliers and adders, designed using the precision scaling
technique

Decision variables: allow selecting the amount on neglected bits for
each of the multiplications/additions

Fitness functions:

m Error: classification-accuracy loss (to be minimized), measured
through simulations on the MNIST handwritten digits dataset [§],
using LeNet5 [7]

m Hardware requirements: silicon area (to be minimized), estimated
from the number of neglected bits
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Neural Networks I
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Neural Networks Il
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Pubblications

M. Barbareschi, S. Barone, N. Mazzocca. Advancing synthesis of decision tree-based multiple classifier systems: an
approximate computing case study. Knowledge and Information Systems 63 (6), 1577-1596, 2021.

S. Barone, M. Traiola, M. Barbareschi, A. Bosio. Multi-Objective Application-driven Approximate Design Method.
IEEE Access, 2021.

M. Barbareschi, S. Barone, A. Bosio, M. Traiola, J. Han. A Genetic-Algorithm-Based Approach to the Design of
DCT Hardware Accelerators. ACM Journal on Emerging Technologies in Computing Systems. (Currently under
review, round two)

M. Barbareschi, S. Barone, N. Mazzocca, and A. Moriconi. A Catalog-based AlG-Rewriting Approach to the
Design of Approximate Components. |EEE Transaction on Emerging Topics in Computing. (Currently under
review, round two)
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(Currently under review)
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Mutators | . I N A

1 int main (void) {

2 for (int i = 0; i < N; i++) {

3 for (int j = 0; j < M; j++) {
4 body;

5

6 }

7}

Listing: Precise Code

38 of 51



Spare slides

€000000

Mutators |l ' Dl_llf H,\A“

FOR_STMT

FOR_BODY

body
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1 int main (void) {

2 for (int i = 0; i < N; i+=stridel) {

3 for (int j = 0; j < M; j+=stride2) {
4 body;

5 ¥

6 &

7}

Listing: Precise Code
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Mutators IV v TR NA

ENIOVIN I

GOAWN =

< .
(]

N

ax_sum(int addl, int add2, int ax);

Listing: Example of approximate sum

x + 2
2 *x x + 3 %y + 2;

Listing: Example code to be mutated

ax_0 = 0;
ax_1 = 0;
ax_2 = 0;

ax_sum(x, 2, ax_0);
ax_sum(ax_sum(2 * x, 3 * y, ax_1), 2, ax_2);

Listing: Mutated code
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F:C~X'C/:D'(T'X‘T/)'D:
= T-X . T'o(diag(D)- diag(D)’)

Fo=[FoQ|=[T-X-T o(diag(D)-diag(D)") ® Q|
S [T-X-T'0 Q) = [(T-(T-X))o Q)

Q = (diag(D) - diag(D)") © Q,
fo=x+x1+x+x3+x3+x5+x+x7 FH=x0—Xx7
h=xo—x1—X+x3+XxXa—Xs —Xg+x7 F=x4—x3
fa =x0— X3 — X4 + x7 fs = x5 — X2

fo = X0 — x1 + X5 — Xp f7=x6 — x1
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Hardware implementation of DTMCS | ) Dl_IE H,\A”

a=(QLAQ2)V(QLA QR3A Q4)
B=(QLIAQ2)V(QLAQR3AQ5)V(QLA Q3 A Q4)
T=Q1AQ3AQ5
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Hardware implementation of DTMCS I Dl_iE H,\A”
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Input
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Hardware implementation of NNs | . Dl_iE H,\A”
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Hardware implementation of NNs [l J Dl_iE H,\A”
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