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The Era of Approximate Computing

» Rather than the best possible result,
Approximate Computing allows to
achieve better computational
performances by carefully relaxing
non-critical functional system

specifications.
» Interested domains:
» signal processing (audio, video, image),
artificial intelligence, machine learning,
data mining, and so forth.
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» To speed-up simulations, we consider C/C++

iImplementation of the algorithm to be approximate.

» Approximate variants generation is performed using the
Clang-Chimera tool, which is an Clang/LLVM-based C/C++

source-to-source mutation engine part of the [IDEAA

framework.

» The MOP resolution is performed by using the ParadiseO
framework, a template-based evolutionary computation

library.

Approximate DT-based MCSs

» Exploit hardware-provided parallelism.

» 50 different model, with classes and trees ranging
from [x,y] and [1,40], respectively

» Precision scaling to reduce FPGA resource

requirements;

» Error metric: classification accuracy;
» Gain estimation: amount of neglected bits.
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The literature proved that Approximate
Computing is effective due to the
inherent application resiliency

» a property for an algorithm to return
acceptable outcomes despite some of its
iInner computations being inaccurate;

» |A applications, such as classifiers and
Neural Networks, are excellent examples of
resilient algorithms!

» The required area overhead makes the
design of a hardware accelerator
unfeasible.

» There is no generic and
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application-independent approach;
The solution space grows very
quickly;

Error metrics definition is critical;
Accuracy and gains are
conflicting objective.
Multi-objective Optimization is
NP-hard

Approximate Neural Networks
» Preliminary study on LeNet5

» 5 different model of the same network (double, float,
clustered float, int16, int8);

» Imprecise arithmetic (Isb truncation), to reduce

FPGA resource requirements;
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» Error metric: classification accuracy
» Gain estimation: weighted sum of neglected bits.

111111

111111

xxxxxx

Ezact part

EC

Approximate part
Bias

d X h X w Inputs

<— AC

l

d X h x w Weights

MUL

T e =l

MUL

MUL s MUL MUL

l \—‘ ’J d x h x w parallel multipliers \—‘ ’J

» Approximate-configurations provided at the end of

the DSE are employed to configure VHDL sources

and perform synthesis.

» The methodology does not depend on a particular

domain:

» |t does not take into account the training process;

» Approximation is introduced on trained models.

» Fithess-functions for MOP still have to be defined

case-by-case

Future Developments

» EXxperimental results show a significant reduction in area requirements, for
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both the minimum error and minimum area configuration.
» Since the classification is very resistant to error, those configurations are very similar both
In terms of area requirements and classification error.

» The LeNet5 model is quite simple when compared to modern CNNs;

» Result show hardware implementation of the whole network is still infeasible on a single

FPGA;

» Single neuron hardware accelerator is feasible on mid-range FPGA.
» Different approximate computing techniques:

» Loop-perforation;

» Inexact aritmetics (instead of mere truncation);

» Different CNN/RNN models;

» SqueezeNet
» MobineNet
» ResNet.
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