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The Era of Approximate Computing

I Rather than the best possible result,
Approximate Computing allows to
achieve better computational
performances by carefully relaxing
non-critical functional system
specifications.

I Interested domains:
I signal processing (audio, video, image),

artificial intelligence, machine learning,
data mining, and so forth.
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I The literature proved that Approximate
Computing is effective due to the
inherent application resiliency
I a property for an algorithm to return

acceptable outcomes despite some of its
inner computations being inaccurate;

I IA applications, such as classifiers and
Neural Networks, are excellent examples of
resilient algorithms!

I The required area overhead makes the
design of a hardware accelerator
unfeasible.

I There is no generic and
application-independent approach;

I The solution space grows very
quickly;

I Error metrics definition is critical;
I Accuracy and gains are

conflicting objective.
I Multi-objective Optimization is

NP-hard

A MOP-based flexible approach to the Design of Approximate Hardware
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I To speed-up simulations, we consider C/C++
implementation of the algorithm to be approximate.
I Approximate variants generation is performed using the

Clang-Chimera tool, which is an Clang/LLVM-based C/C++
source-to-source mutation engine part of the IIDEAA
framework.

I The MOP resolution is performed by using the ParadisEO
framework, a template-based evolutionary computation
library.

I Approximate-configurations provided at the end of
the DSE are employed to configure VHDL sources
and perform synthesis.

I The methodology does not depend on a particular
domain:
I It does not take into account the training process;
I Approximation is introduced on trained models.
I Fitness-functions for MOP still have to be defined

case-by-case

Approximate DT-based MCSs
I Exploit hardware-provided parallelism.
I 50 different model, with classes and trees ranging

from [x,y] and [1,40], respectively
I Precision scaling to reduce FPGA resource

requirements;
I Error metric: classification accuracy;
I Gain estimation: amount of neglected bits.

f1<4 f2<10,9 f2<27.5 f1<17 f1<22
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Approximate Neural Networks
I Preliminary study on LeNet5
I 5 different model of the same network (double, float,

clustered float, int16, int8);
I Imprecise arithmetic (lsb truncation), to reduce

FPGA resource requirements;
I Error metric: classification accuracy
I Gain estimation: weighted sum of neglected bits.
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Future Developments

I Experimental results show a significant reduction in area requirements, for
both the minimum error and minimum area configuration.
I Since the classification is very resistant to error, those configurations are very similar both

in terms of area requirements and classification error.
I The LeNet5 model is quite simple when compared to modern CNNs;

I Result show hardware implementation of the whole network is still infeasible on a single
FPGA;

I Single neuron hardware accelerator is feasible on mid-range FPGA.
I Different approximate computing techniques:

I Loop-perforation;
I Inexact aritmetics (instead of mere truncation);

I Different CNN/RNN models;
I SqueezeNet
I MobineNet
I ResNet.
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