
Towards Approximate-Computing AI Applications through
Code-Mutation and Genetic Search

XXXIV Cycle - II year presentation

Salvatore Barone
Tutor: Antonino Mazzeo

The Era of Approximate Computing

I Rather than the best possible result,
Approximate Computing allows to
achieve better computational
performances by carefully relaxing
non-critical functional system
specifications.

I Interested domains:
I signal processing (audio, video, image),

artificial intelligence, machine learning,
data mining, and so forth.

Approximate
Computing

Hardware
Level

Storage
Level

Software
Level

I The literature proved that Approximate
Computing is effective due to the
inherent application resiliency
I a property for an algorithm to return

acceptable outcomes despite some of its
inner computations being inaccurate;

I IA applications, such as classifiers and
Neural Networks, are excellent examples of
resilient algorithms!

I The required area overhead makes the
design of a hardware accelerator
unfeasible.

I There is no generic and
application-independent approach;

I The solution space grows very
quickly;

I Error metrics definition is critical;
I Accuracy and gains are

conflicting objective.
I Multi-objective Optimization is

NP-hard

A MOP-based flexible approach to the Design of Approximate Hardware

Approximate
Variants
(C++)

VHDL Source
Configuration

Synthesis Tool

Algorithm
Implementation

(VHDL) 

Approximate
Configurations

(VHDL)

Mutation Engine
 Algorithm

Implementation
(C++)

Approximate
Configuration
Generation

Fitness-functions
Computation Genetic

Algorithm

1101010
0011101
1001001
0111000

FPGA
bitstream

ASIC
specification

I To speed-up simulations, we consider C/C++
implementation of the algorithm to be approximate.
I Approximate variants generation is performed using the

Clang-Chimera tool, which is an Clang/LLVM-based C/C++
source-to-source mutation engine part of the IIDEAA
framework.

I The MOP resolution is performed by using the ParadisEO
framework, a template-based evolutionary computation
library.

I Approximate-configurations provided at the end of
the DSE are employed to configure VHDL sources
and perform synthesis.

I The methodology does not depend on a particular
domain:
I It does not take into account the training process;
I Approximation is introduced on trained models.
I Fitness-functions for MOP still have to be defined

case-by-case

Approximate DT-based MCSs
I Exploit hardware-provided parallelism.
I 50 different model, with classes and trees ranging

from [x,y] and [1,40], respectively
I Precision scaling to reduce FPGA resource

requirements;
I Error metric: classification accuracy;
I Gain estimation: amount of neglected bits.

f1<4 f2<10,9 f2<27.5 f1<17 f1<22

ACACECEC

0 5 10 15 20 25 30 35 40

Number of DTs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
re

a 
re

qu
ire

m
en

ts
 (

LU
T

s)

10 4

Non-approx. classifier
Approx. classifier (minimum error config.)
Approx. classifier (minimum area config.)

0 5 10 15 20 25 30 35 40

Number of DTs

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

A
cc

ur
ac

y 
(%

)

Non-approx. classifier
Approx. classifier (minimum area config.)

Approximate Neural Networks
I Preliminary study on LeNet5
I 5 different model of the same network (double, float,

clustered float, int16, int8);
I Imprecise arithmetic (lsb truncation), to reduce

FPGA resource requirements;
I Error metric: classification accuracy
I Gain estimation: weighted sum of neglected bits.

MUL MUL MUL MUL

ADD ADD ADDADDADD

MUL

ADD ADDADD

Activation Function

Output

#Approx. Configuration0

50000

100000

150000

200000

250000

300000

350000

400000

Am
ou

nt
 o

f r
eq

ui
re

d 
LU

Ts

0 1 2 3 4 5 6
#Approx. Configuration

0

25000

50000

75000

100000

125000

150000

175000

Am
ou

nt
 o

f r
eq

ui
re

d 
FF

s

Conv1
Conv2
Conv3
FC1
FC2

Future Developments

I Experimental results show a significant reduction in area requirements, for
both the minimum error and minimum area configuration.
I Since the classification is very resistant to error, those configurations are very similar both

in terms of area requirements and classification error.
I The LeNet5 model is quite simple when compared to modern CNNs;

I Result show hardware implementation of the whole network is still infeasible on a single
FPGA;

I Single neuron hardware accelerator is feasible on mid-range FPGA.
I Different approximate computing techniques:

I Loop-perforation;
I Inexact aritmetics (instead of mere truncation);

I Different CNN/RNN models;
I SqueezeNet
I MobineNet
I ResNet.

Contacts

UNI
NA

DIE
II I

DIPARTIMENTO DI INGEGNERIA ELETTRICA
E DELLE TECNOLOGIE DELL’INFORMAZIONE

VERSITA DEGLI STUDI DI

POLI FEDERICO II
,

salvatore.barone@unina.it
salvator.barone@gmail.com
salvator.barone

Join the conversation here!


