

Year-End Presentation

Salvatore BARONE salvatore.barone@unina.it

Tutor: Antonino MAZZEO mazzeo@unina.it

October 25, 2019

Outline

2 Introduction

- 3 Approximate by Mutation
- 4 Research products
- 5 Future works

6 The End

- Master Degree in Information Technology at University of Naples -Federico II
- Master Thesis: Un prototipo di middleware configurabile nel dominio ferroviario – per fault detection e comunicazione affidabile;
 - This thesis work is part of a joint project involving the DIETI and Rete Ferroviaria Italiana - RFI - Gruppo delle ferrovie dello Stato S.p.a.;
- Currently involved in three research projects:
 - The railway domain;
 - Approximate Computing;
 - Hardware security;

Approximate Computing

- The size of the data to be processed by computer systems is rapidly growing.
- Unmatched technology progress.
 - CMOS technology is approaching its physical limit.
 - Die-shrinking is not a viable solution anymore.
- Energy consumption is an emerging issue.
- Many applications show error resiliency.
 - Noisy input data.
 - Redundant computations.
 - Self-healing.
- Error resiliency is exploited by Approximate Computing.
- Relaxing accuracy requirements to achieve some desired properties.
 - Typically, energy efficiency.

Challenges

- Naive approaches, such as uniform approximation, is unlikely to be efficient.
- Many techniques have been proposed.
 - Too tied with a specific application.
 - None of them have general applicability.
- Output monitoring is mandatory.
 - Application requirement must be met.
 - Induced error must fall below an user-defined/application-dependent threshold.
- Different approximate versions of the same application have to be evaluated (quickly).
 - There is no generic automation tool.

The $\mathbb{I}DE\mathbb{A}$ framework

- Clang-Chimera
 - It is a source-to-source *mutation engine*.
 - It Needs a C/C++ model of the algorithm to be approximated.
 - It is based on Clang-LLVM.
 - It applies used-defined mutations on the Abstract Syntax Tree (AST)
- Bellerophon
 - It is a design-space exploration tool designed to solve Multi-objective Optimization Problems (MOPs).
 - It is based on Non-dominated Sorted Genetic Algorithm (NSGA)-II.
 - It exploits the Clang-LLVM Just-In-Time (JIT) compiler.
 - The evaluation is based on three fitness functions:
 - error function: expresses the measured amount of error, w.r.t. a reference solution;
 - reward function: rewards certain characteristics of one solution;
 - penalty function: penalizes infeasible solutions w.r.t. the degrees of constraint.

The End

The IDEA Work-flow

The End

The DCT: a case study (1/2)

- A configurable, approximate DCT HW-accelerator is implemented.
 - Image-processing is one of the best field of application for AxC.
 - The DCT is the most demanding step of the JPEG compression algorithm.
- Many fast-algorithms have been proposed.
 - No need for floating-point operations.
 - No need for multiplications.
 - Only integer additions.
- To further reduce area and energy requirements, inexact adders can be adopted.

Approximate by Mutation

Research products

The End

The DCT: a case study (2/2) Approximate DCT

- 7 different DCT-computation algorithms have been tested.
- 10 different inexact adder cells have been considered.
- Source of approximation:
 - The Number of Approximated Bits (NABs) of the sum.
 - The type of cells.
- Synthesised on Xilinx Zynq-7010 FPGA and 65nm CMOS ASIC.

Introductio

Approximate by Mutation

Research products

uture works

The End

Experimental Results (1/2)

Original Image

BAS-08 with approximation

BAS-08 with 33% error, 22% reward

Salvatore Barone

Experimental Results (2/2)

Publications

The End

Title:	Approximate Computing by Mutation: a General
	Approach
Туре:	Journal article
Publisher:	IEEE Transaction on Computers
Status:	Under Review
Title	Advancing Synthesis of Decision Tree Based Multi-
THE.	Advancing Synthesis of Decision free Dusea mater
Title.	ple Classifier Systems: an Approximate Computing
Title.	ple Classifier Systems: an Approximate Computing Case Study
Туре:	ple Classifier Systems: an Approximate Computing Case Study Journal article

Future works

- Apply the same methodology in different fields of application.
 - Machine-learning and classifiers.
- Hardware is typically designed using Hardware Description Languages (HDLs) such as VHDL or Verilog.
- The need of a C/C++ model is a limitation.
 - The mutated C/C++ source code must be used to re-implement the algorithm.
 - GHDL-Chimera: a VHDL source-to-source mutation engine.

Year-End Presentation

Salvatore BARONE salvatore.barone@unina.it

Tutor: Antonino MAZZEO mazzeo@unina.it

October 25, 2019

