

Pierluigi Arpenti Tutor: Vincenzo Lippiello XXXIII Cycle - I year presentation

Passivity-Based Approaches to Locomotion Control of Walking Bipedal Robots

Pierluigi Arpenti

Background

M.Sc. in Automation Engineering – Università degli Studi di Napoli Federico II, Department of Information Technologies and Electrical Engineering – September 2016

- Master thesis title:
 "A High Level Control Architecture for Simultaneous Localization, 3D Mapping and Navigation for Mobile Robots", developed at Prisma Lab
 Mapping Studi di Napoli Federico II
- Currently PhD student in Information Technology and Electrical Engineering, XXXIII Cycle, at Università degli Studi di Napoli Federico II with a MIUR fellowship, supervised by Prof. Vincenzo Lippiello and Dr. Fabio Ruggiero

Research Problem

Underactuated Robotics

Underactuated robots exhibit a lower number of actuators than degrees of freedom

- Walking-Robots
- Flying-Robots
- Robot-Manipulators

To achieve outstanding dynamic performances (efficiency, agility, and robustness), design control systems which take advantage of the non-linear dynamics, not cancel them out

Adopted Methodology: the p-H framework

The port-Hamiltonian framework expresses the dynamic of a system in terms of generalized coordinates and momenta modeling the system from an energetic point of view

$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = \left\{ \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \right\} \begin{bmatrix} \frac{\partial H(q,p)}{\partial q} \\ \frac{\partial H(q,p)}{\partial p} \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} F$$

Adopted Methodology: the IDA-PBC

Interconnection and Damping Assignment Passivity-Based Control

Pro

- Exploit the non-linear dynamics of the system
- Physical interpretation of the control law (Lyapunov function is the Hamiltonian of the system)
- Energy efficient

Cons

 Solving a set of non-linear partial differential equations which arise matching the open loop dynamics with the desired closed loop ones

Open loop PHS

Closed-loop PHS

$$\boxed{\dot{x} = \left[J_d(x) - R_d(x)\right] \frac{\partial H_d}{\partial x}}$$

Matching open and closed-loop PHS

 $\dot{x} = \left[J(x) - R(x)\right] \frac{\partial H}{\partial x} + g(x)u$

$$\left[J(x) - R(x)\right]\frac{\partial H}{\partial x} + g(x)u = \left[J_d(x) - R_d(x)\right]\frac{\partial H_d}{\partial x}$$

Adopted Methodology: the IDA-PBC

For underactuated mechanichal systems the matching equation can be separated in kinetic and potential energy ones

Kinetic energy matching equation (KE-ME)

$$G^{\perp} \left[\nabla_q^{\top} [M^{-1}p] p - M_d M^{-1} \nabla_q^{\top} [M_d^{-1}p] p + 2J_2 M_d^{-1}p \right] = 0$$

Potential energy matching equation (PE-ME)

$$G^{\perp} \left[\nabla V - M_d M^{-1} \nabla V_d \right] = 0$$

Parameterize the desired mass matrix to simplify the solution of the PDEs!

Developments

Control of the Underactuated Translational Oscillator with a Rotational Actuator System Without Explicit Solution of Matching Equations

- Underactuated mechanical system with two degrees of freedom and one actuator (rotating mass)
- Stabilized in the equilibrium (0,0) (the minimum fo the closed loop total energy) in presence of noise, parametric uncertainties and an exogenus disturbance
- Benchmark for upcoming applications of IDA-PBC to dynamic walking tasks

Products

Accepted Paper

P. Arpenti, D. Serra, F. Ruggiero, V. Lippiello, "Control of the TORA System through the IDA-PBC without Explicit Solution of Matching Equations", accepted by IEEE International Robotic Computing Conference 2019, Naples, 25-27 February 2019

Future Application Field Manipulation: Static VS Dynamic

Grasping

 Object manipulated caging it between fingers

Nonprhensile Manipulation

Object manipulated without caging it

IDA-PBC well suited for nonprhensile manipulation (robustness, efficiency)

Future Application Field Bipedal Walking

Bipedal Robots imitates humans locomotion, intrinsically underactuated

Pro

- High mobility on many different terrains
- Decoupling between lower and upper limbs facilitates manipulation tasks

Cons

 Robustness issues (coupled nonlinear dynamics, generally unstable, and hybrid phenomena due to the switching between feet and ground)

Future Application Field

Bipedal Walking: Static VS Dynamic

Balancing

— Stability Control

Running

Stability + Motion Control

Future Application Field

Key Idea:

Dynamic Walking as Nonphrensile Manipulation

Similarities between grasping and walking require to optimize the contact forces between the legs and the ground a quasi-static manipulation problem

Cons

Nor fast or efficient

Idea: exploit similarities between dynamic walking and dynamic manipulation arising from hybrid contact/non-contact conditions

Pro

 Adapt the passivity-based controls developed for nonprehensile Manipulation manipulation to dynamic walking to get energy efficiency !

Pierluigi Arpenti

Locomotion

investigate mapping between different domains

Side Research Problem

Automated Depalletization Task for Logistic Robotics

Side Research Activity

Model-Based Image Processing for Automated Depaletization

Next Years

	Credits year 1							Credits year 2							Credits year 3											
		1	2	3	4	5	9			1	2	3	4	5	9			1	2	3	4	5	9			
	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Estimated	bimonth	bimonth	bimonth	bimonth	bimonth	bimonth	Summary	Total	Check
Modules	18	0	4	9	5	0	0	18	8							0	4							0	18	30-70
Seminars	13	1,4	1	1	3	0	0,2	6,6	4							0	0							0	6,6	10-30
Research	34	6	6	3	3	9	9	36	47							0	56							0	36	80-140
	65	7,4	11	13	11	9	9,2	61	59	0	0	0	0	0	0	0	60	0	0	0	0	0	0	0	61	180

Year	Lecture/Activity	Туре	Credits	Certification	Notes
	MODULES				
1	Delay differential equations (DDEs) and their applications	Ad hoc module	3	х	
1	Introduction to modeling and control of mechanical systems with constraints	Ad hoc module	2	х	
1	Image processing for computer vision	MS module	9	x	
1	Geometric theory of soft robotics	External module	4	x	
	SEMINARS				
1	Dynamic control: mathematical challenges and applications	Seminar	0,4	х	
1	Etica e intelligenze artificiali	Seminar	0,5	х	
1	Le nuove frontiere della robotica cognitiva e l'interazione uomo-robot	Seminar	0,5	х	
1	Razionalità limitata nell'uomo e nella macchina	Seminar	0,6	х	
1	The age of human-robot collaboration	Seminar	0,4	x	
1	IBM:Q: building the first universal quantum computers for business and science	Seminar	0,8	х	
1	How does mathworks accelerate the pace of engineering and science	Seminar	0,2	x	
1	Domains of attraction and manifolds in a gear model	Seminar	0,2	x	
1	Adaptive control systems: methodologies for analysis and synthesis	Doctoral School	1,5	x	
1	Optimization methods for decision making over networks	Doctoral School	1,5	x	

Thank You

